

2 CROSSTALK The Journal of Defense Software Engineering December 2007

4

9

15

19

24

Geriatric Issues of Aging Software
Capers Jones discusses the need of every company to evaluate and consider
best practices for maintenance and to avoid common worst practices.
by Capers Jones

Performance-Based Software Sustainment for the F-35
Lightning II
This article describes some of the revolutionary conclusions and
products of an analysis of the sustainment for the F-35 and provides a
look forward to performance-based sustainment of software for the
multinational F-35 fleet.
by Lloyd Huff and George Novak

Reference Metrics for Service-Oriented Architectures
This article presents a set of reference metrics for measuring the quality of
services in Service-Oriented Architectures.
by Dr. Yun-Tung Lau

A Primer on Java Obfuscation
This article describes the three major techniques of Java obfuscation used
in present state-of-the-art tools.
by Stephen Torri, Derek Sanders, Dr. Drew Hamilton, and Gordon Evans

Advancing Defect Containment to Quantitative
Defect Management
This article provides samplings of derived defect measures with steps on
how to create them.
by Alison A. Frost and Michael J. Campo

SoftwSoftwaarree SustaSustainmentinment

SoftwSoftwaarree EngineerEngineeringing TTechnolechnologogyy

3
18

30
31

D eD e p ap a rr t m e n t st m e n t s

From the Publisher

Coming Events
Web Sites
SSTC 2008

2007 Article Index

BackTalk

CrossTalk
CO-SPONSORS:

DOD-CIO

NAVAIR

76 SMXG

309 SMXG

402 SMXG

DHS

STAFF:
MANAGING DIRECTOR

PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

The Honorable John Grimes

Jeff Schwalb

Kevin Stamey

Norman LeClair

Diane Suchan

Joe Jarzombek

Brent Baxter

Elizabeth Starrett

Kase Johnstun

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555
crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the Department of
Defense Chief Information Office (DoD-CIO); U.S.
Navy (USN); U.S. Air Force (USAF); Defense Finance
and Accounting Services (DFAS); and the U.S.
Department of Homeland Security (DHS). DoD-CIO
co-sponsor: Assistant Secretary of Defense
(Networks and Information Integration). USN co-
sponsor: Naval Air Systems Command. USAF co-
sponsors: Oklahoma City-Air Logistics Center (ALC)
76 Software Maintenance Group (SMXG); Ogden-
ALC 309 SMXG; and Warner Robins-ALC 402
SMXG. DHS co-sponsor: National Cyber Security
Division of the Office of Infrastructure Protection.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 28.

517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, the co-sponsors, or
the STSC.All product names referenced in this issue
are trademarks of their companies.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-0857 or e-mail <stsc.web
master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Cover Design by
Kent Bingham

ON THE COVER

Additional art services
provided by Janna Jensen

The CrossTalk staff would like to wish you and yours the very
best this holiday season and the happiest of New Years.

December 2007 www.stsc.hill.af.mil 3

From the Publisher

Iwork with a person who cringes when he hears the term software maintenance. For him,
maintenance brings forth images of an angry general asking why he is paying to fix

a system that he already paid for and expects to work. As you will read in this month’s
issue, software maintenance usually involves so much more and perhaps the term soft-
ware sustainment is more descriptive.

As the CrossTalk staff prepared this month’s selection of articles, I noticed one
software sustainment topic that warrants additional discussion: knowledge retention.

In order to sustain software using the techniques discussed in this month’s issue, knowledge of
the software/system is needed. This required knowledge must be adequately planned in addition
to other resources required for adequate logistics support. Basically, someone has to know how
the software works. Even if the number of fixes, enhancements, alterations, and other activities
are minimal and just a few engineers could conceivably address these, the size and complexity
of the system may be quite large, requiring more people to cover the needed knowledge.

I am fortunate to work closely with Dr. Randall Jensen, one of the leaders in the software
estimation community. In a recent discussion, he pointed to heuristics from Dr. Barry Boehm
in his book, “Software Engineering Economics.” These heuristics assign complexity values to
various software systems such as operating systems, accounting systems, operational flight pro-
grams (OFP), etc. For example, an OFP is assigned a value of 10. This 10 equates to (of all
things) boxes of cards that an operator can handle for this system. One can imagine this infor-
mation is quite old because computer cards are certainly before my time. Yet the statistic seems
to have stood the test of time. By allowing 2,000 cards per box, or 2,000 source lines of code
(KSLOC) per number, a typical OFP will need a knowledgeable person for every 20 KSLOC (2
KSLOC x 10).

Of course, it is cost prohibitive to have numerous people waiting around to make few alter-
ations to the code. However, these people can spend their excess time supporting other systems
that may have oversight from other experts.

There are numerous other sustainment considerations within this month’s CrossTalk,
beginning with Capers Jones’ Geriatric Issues of Aging Software. In his article, Jones provides a
much more comprehensive discussion of sustainment issues that must be considered when
planning a logistics effort. We next share the F-35 Lightning II sustainment approach, including
the contracting structure, in Performance-Based Software Sustainment for the F-35 Lightning II by Lloyd
Huff and George Novak. In our final theme article, Reference Metrics for Service-Oriented
Architectures, Dr. Yun-Tung Lau suggests including service time, scalability, availability, and relia-
bility while measuring the usefulness of a fielded service-oriented architecture.

We offer two supporting articles this month, beginning with A Primer on Java Obfuscation by
Stephen Torri, Derek Sanders, Gordon Evans, and Dr. Drew Hamilton. In this article, the
authors caution on the attempted use of obfuscation to protect Java code, while adding some
suggestions for consideration if Java is truly required in a secure system. Finally, Alison A. Frost
and Michael J. Campo discuss defect containment in Advancing Defect Containment to Quantitative
Defect Management.

Having worked on multiple sustainment efforts, I have experienced the daunting task of
understanding the code that is being altered. What would have often been a simple job for a sys-
tem I was familiar with, became more complicated and time-consuming as I needed to learn
about the software before starting any changes. When this need is added to complex changes
requiring requirements modeling, contracting, etc., the list of considerations is extensive and
must be approached with educated knowledge.

Software Sustainment or Maintenance?

Elizabeth Starrett
Publisher

4 CROSSTALK The Journal of Defense Software Engineering December 2007

Software Sustainment

As the 21st century advances, more
than 50 percent of the global soft-

ware population is engaged in modifying
existing applications rather than writing
new applications. This fact by itself
should not be a surprise because whenev-
er an industry has more than 50 years of
product experience, the personnel who
repair existing products tend to outnum-
ber the personnel who build new prod-
ucts. For example, there are more automo-
bile mechanics in the United States who
repair automobiles than there are person-
nel employed in building new automo-
biles.

The imbalance between software
development and maintenance is opening
up new business opportunities for soft-
ware outsourcing groups. It is also gener-
ating a significant burst of research into
tools and methods for improving software
maintenance performance.

What Is Software
Maintenance?
The word maintenance is surprisingly
ambiguous in a software context. In nor-
mal usage, it can span some 23 forms of
modification to existing applications. The
two most common meanings of the word
maintenance include the following: 1)
defect repairs, and 2) enhancements (or
adding new features to existing software
applications).

Although software enhancements and
software maintenance in the sense of
defect repairs are usually funded in differ-
ent ways and have quite different sets of
activity patterns associated with them,
many companies lump these disparate
software activities together for budgets
and cost estimates.

The author does not recommend the
practice of aggregating defect repairs and
enhancements, but this practice is very
common. Consider some of the basic dif-
ferences between enhancements or adding
new features to applications and mainte-
nance or defect repairs as shown in Table 1.

Because the general topic of mainte-
nance is so complicated and includes so
many different kinds of work, some com-
panies merely lump all forms of mainte-
nance together, using gross metrics such as
the overall percentage of annual software
budgets devoted to all forms of mainte-
nance summed together. This method is
crude, but can convey useful information.
An organization that is proactive in using
geriatric tools and services can spend less
than 30 percent of its annual software
budget on various forms of maintenance,
while an organization that has not used
any of the geriatric tools and services can
top 60 percent of its annual budget on var-
ious forms of maintenance.

The kinds of maintenance tools used
by lagging, average, and leading organiza-

tions are shown in Table 2. Table 2 is part
of a larger study that examined many dif-
ferent kinds of software engineering and
project management tools [1].

It is interesting that the leading com-
panies in terms of maintenance sophisti-
cation not only use more tools than the
laggards, but they use more of their fea-
tures as well. Again, the function point
values in Table 2 refer to the capabilities of
the tools that are used in day-to-day main-
tenance operations. The leaders not only
use more tools, but they do more with
them.

Before proceeding, let us consider 23
discrete topics that are often coupled
together under the generic term mainte-
nance in day-to-day discussions, but which
are actually quite different in many impor-
tant respects [2] (See Table 3 for the list of
23 topics).

Although the 23 maintenance topics
are different in many respects, they all
have one common feature that makes a
group discussion possible: They all
involve modifying an existing application
rather than starting from scratch with a
new application.

Each of the 23 forms of modifying
existing applications has a different rea-
sons for being carried out. However, it
often happens that several of them take
place concurrently. For example, enhance-
ments and defect repairs are very common
in the same release of an evolving applica-
tion. There are also common sequences or
patterns to these modification activities.
For example, reverse engineering often
precedes reengineering and the two occur
so often together as to almost comprise a
linked set. For releases of large applica-
tions and major systems, the author has
observed between six and 10 forms of
maintenance all leading up to the same
release.

Geriatric Issues of Aging Software
Capers Jones

Software Productivity Research, LLC.

Software has been a mainstay of business and government operations for more than 50 years. As a result, all large enter-
prises utilize aging software in significant amounts. Some companies exceed 5,000,000 function points in the total volume of
their corporate software portfolios. Much of this software is now more than 10 years old, and some applications are more
than 25 years old. Maintenance of aging software tends to become more difficult year by year since updates gradually destroy
the original structure of the applications and increase its entropy. Aging software may also contain troublesome regions with
very high error densities called error-prone modules. Repairs to aging software suffer from a phenomenon called bad fix injec-
tion, or new defects are accidentally introduced as a byproduct of fixing previous defects.

Table 1: Key Differences Between Maintenance and Enhancements

Enhancements
(New features)

Maintenance
(Defect repairs)

Funding source Clients Absorbed
Requirements Formal None
Specifications Formal None
Inspections Formal None
User documentation Formal None
New function testing Formal None
Regression testing Formal Minimal

Maintenance Engineering Lagging Average Leading

Table 1: Key Differences Between Maintenance and Enhancements

Geriatric Issues of Aging Software

Geriatric Problems of Aging
Software
Once software is put into production it
continues to change in three important
ways:
1. Latent defects still present at release

must be found and fixed after deploy-
ment.

2. Applications continue to grow and add
new features at a rate of between 5
percent and 10 percent per calendar
year, due either to changes in business
needs or to new laws and regulations,
or both.

3. The combination of defect repairs and
enhancements tends to gradually
degrade the structure and increase the
complexity of the application. The
term for this increase in complexity
over time is called entropy. The average
rate at which software entropy increas-
es is about 1 percent to 3 percent per
calendar year.
Because software defect removal and

quality control are imperfect, there will
always be bugs or defects to repair in
delivered software applications. The cur-
rent U.S. average for defect removal effi-
ciency is only about 85 percent of the
bugs or defects introduced during devel-
opment [3] and has stayed almost the
same for more than 10 years. The actual
values are about five bugs per function
point created during development. If 85
percent of these are found before release,
about 0.75 bugs per function point will be
released to customers. For a typical appli-
cation of 1,000 function points or 100,000
source code statements, that implies about
750 defects present at delivery. About
one-third – or 250 defects – will be serious
enough to stop the application from run-
ning or create erroneous outputs.

Since defect potentials tend to rise
with the overall size of the application,
and since defect removal efficiency levels
tend to decline with the overall size of the
application, the overall volume of latent
defects delivered with the application rises
with size. This explains why super-large
applications in the range of 100,000 func-
tion points, such as Microsoft Windows
and many enterprise resource planning
(ERP) applications, may require years to
reach a point of relative stability. These
large systems are delivered with thousands
of latent bugs or defects.

Not only is software deployed with a
significant volume of latent defects, but a
phenomenon called bad fix injection has
been observed for more than 50 years.
Roughly 7 percent of all defect repairs will
contain a new defect that was not there

before. For very complex and poorly
structured applications, these bad-fix
injections have topped 20 percent [3].

In the 1970s, IBM did a distribution
analysis of customer-reported defects
against their main commercial software
applications. The IBM personnel involved
in the study, including the author, were
surprised to find that defects were not
randomly distributed through all of the
modules of large applications [4].

In the case of IBM’s main operating
system, about 5 percent of the modules
contained just over 50 percent of all
reported defects. The most extreme exam-
ple was a large database application, where
31 modules out of 425 contained more
than 60 percent of all customer-reported
bugs. These troublesome areas were
known as error-prone modules.

Similar studies by other corporations

such as AT&T and ITT found that error-
prone modules were endemic in the soft-
ware domain. More than 90 percent of
applications larger than 5,000 function
points were found to contain error-prone
modules in the 1980s and early 1990s.
Summaries of the error-prone module
data from a number of companies was
published in [3].

Fortunately, it is possible to surgically
remove error-prone modules once they
are identified. It is also possible to prevent
them from occurring. A combination of
defect measurements, formal design
inspections, formal code inspections, and
formal testing and test-coverage analysis
have proven to be effective in preventing
error-prone modules from coming into
existence [5].

Today in 2007, error-prone modules
are almost nonexistent in organizations

December 2007 www.stsc.hill.af.mil 5

g
Regression testing Formal Minimal

Maintenance Engineering Lagging Average Leading

Reverse engineering 1,000 3,000

Reengineering 1,250 3,000

Code restructuring 1,500

Configuration control 500 1,000 2,000

Test support 500 1,500

Customer support 750 1,250

Debugging tools 750 750 1,250

Defect tracking 500 750 1,000

Complexity analysis 1,000

Mass update search engines 500 1,000

Function point subtotal 1,750 6,500 16,500

Number of tools 3 8 10

Table 3:

Major Kinds of Work Performed Under the Generic Term Maintenance
1. Major enhancements (new features of > 20 function points).
2. Minor enhancements (new features of < 5 function points).
3. Maintenance (repairing defects for good will).
4. Warranty repairs (repairing defects under formal contract).
5. Customer support (responding to client phone calls or problem reports).
6. Error-prone module removal (eliminating very troublesome code segments).
7. Mandatory changes (required or statutory changes).
8. Complexity or structural analysis (charting control flow plus complexity metrics).
9. Code restructuring (reducing cyclomatic and essential complexity).
10. Optimization (increasing performance or throughput).
11. Migration (moving software from one platform to another).
12. Conversion (changing the interface or file structure).
13. Reverse engineering (extracting latent design information from code).
14. Reengineering (transforming legacy application to modern forms).
15. Dead code removal (removing segments no longer utilized).
16. Dormant application elimination (archiving unused software).
17. Nationalization (modifying software for international use).
18. Mass updates such as the Euro or Year 2000 (Y2K) repairs.
19. Refactoring, or reprogramming, applications to improve clarity.
20. Retirement (withdrawing an application from active service).
21. Field service (sending maintenance members to client locations).
22. Reporting bugs or defects to software vendors.
23. Installing updates received from software vendors.

Table 2: Numbers and Size Ranges of Maintenance Engineering Tools (Size data expressed in terms
of function point metrics)

Table 1: Key Differences Between Maintenance and Enhancements

Enhancements
(New features)

Maintenance
(Defect repairs)

Funding source Clients Absorbed
Requirements Formal None
Specifications Formal None
Inspections Formal None
User documentation Formal None
New function testing Formal None
Regression testing Formal Minimal

Maintenance Engineering Lagging Average Leading

Reverse engineering 1,000 3,000

Reengineering 1,250 3,000

Code restructuring 1,500

Configuration control 500 1,000 2,000

Test support 500 1,500

Customer support 750 1,250

Debugging tools 750 750 1,250

Defect tracking 500 750 1,000

Complexity analysis 1,000

Mass update search engines 500 1,000

Function point subtotal 1,750 6,500 16,500

Number of tools 3 8 10

Table 3:

Major Kinds of Work Performed Under the Generic Term Maintenance
1. Major enhancements (new features of > 20 function points).
2. Minor enhancements (new features of < 5 function points).
3. Maintenance (repairing defects for good will).
4. Warranty repairs (repairing defects under formal contract).
5. Customer support (responding to client phone calls or problem reports).
6. Error-prone module removal (eliminating very troublesome code segments).
7. Mandatory changes (required or statutory changes).
8. Complexity or structural analysis (charting control flow plus complexity metrics).
9. Code restructuring (reducing cyclomatic and essential complexity).
10. Optimization (increasing performance or throughput).
11. Migration (moving software from one platform to another).
12. Conversion (changing the interface or file structure).
13. Reverse engineering (extracting latent design information from code).
14. Reengineering (transforming legacy application to modern forms).
15. Dead code removal (removing segments no longer utilized).
16. Dormant application elimination (archiving unused software).
17. Nationalization (modifying software for international use).
18. Mass updates such as the Euro or Year 2000 (Y2K) repairs.
19. Refactoring, or reprogramming, applications to improve clarity.
20. Retirement (withdrawing an application from active service).
21. Field service (sending maintenance members to client locations).
22. Reporting bugs or defects to software vendors.
23. Installing updates received from software vendors.

Table 3: Major Kinds of Work Performed Under the Generic Term Maintenance

Software Sustainment

that are higher than Level 3 on the
Software Engineering Institute’s Capabil-
ity Maturity Model® (CMM®). However,
they remain common and troublesome for
Level 1 organizations and for organiza-
tions that lack sophisticated quality mea-
surements and quality control.

If the author’s clients are representa-
tive of the United States as a whole, more
than 50 percent of U.S. companies still do
not utilize the CMM at all. Of those who
do use the CMM, less than 15 percent are
at Level 3 or higher. That implies that
error-prone modules may exist in more
than half of all large corporations and in
a majority of state government software
applications as well.

Once deployed, most software applica-
tions continue to grow at annual rates of
between 5 percent and 10 percent of their
original functionality. Some applications,
such as Microsoft Windows, have
increased in size by several hundred per-
cent over a 10-year period.

The combination of continuous
growth of new features coupled with con-
tinuous defect repairs tends to drive up
the complexity levels of aging software
applications. Structural complexity can be

measured via metrics such as cyclomatic
and essential complexity using a number
of commercial tools. If complexity is
measured on an annual basis and there is
no deliberate attempt to keep complexity
low, the rate of increase is between 1 per-
cent and 3 percent per calendar year.

However – and this is an important
fact – the rate at which entropy or com-
plexity increases is directly proportional to
the initial complexity of the application.
For example, if an application is released
with an average cyclomatic complexity
level of less than 10, it will tend to stay
well structured for at least five years of
normal maintenance and enhancement
changes.

But if an application is released with
an average cyclomatic complexity level of
more than 20, its structure will degrade
rapidly and its complexity levels might
increase by more than 2 percent per year.
The rate of entropy and complexity will
even accelerate after a few years.

As it happens, both bad-fix injections
and error-prone modules tend to correlate
strongly (although not perfectly) with high
levels of complexity. A majority of error-
prone modules have cyclomatic complexity
levels of 10 or higher. Bad-fix injection lev-
els for modifying high-complexity applica-
tions are often higher than 10 percent.

In the late 1990s, a special kind of
geriatric issue occurred which involved
making simultaneous changes to thou-
sands of software applications. The first
of these mass update geriatric issues was the
deployment of the Euro currency, which
required changes to currency conversion
routines in thousands of applications. The
Euro was followed almost immediately by
the dreaded Y2K (Year 2000) problem [6],
which also involved mass updates of
thousands of applications. More recently
in March of 2007, another such issue
occurred when the starting date of day-
light savings time was changed.

Future mass updates will occur later in
the century when it may be necessary to
add another digit to telephone numbers or
area codes. Yet another and very serious
mass update will occur if it becomes nec-
essary to add digits to social security num-
bers in the second half of the 21st centu-
ry. There is also the potential problem of
the Unix time clock expiration in 2038.

Metrics Problems With Small
Maintenance Projects
There are several difficulties in exploring

software maintenance costs with accuracy.
One of these difficulties is the fact that
maintenance tasks are often assigned to
development personnel who interweave
both development and maintenance as the
need arises. This practice makes it difficult
to distinguish maintenance costs from
development costs because the program-
mers are often rather careless in recording
how time is spent.

Another and very significant problem
is the fact that a great deal of software
maintenance consists of making very
small changes to software applications.
Quite a few bug repairs may involve fixing
only a single line of code. Adding minor
new features, such as a new line-item on a
screen, may require less than 50 source
code statements.

These small changes are below the
effective lower limit for counting function
point metrics. The function point metric
includes weighting factors for complexity,
and even if the complexity adjustments
are set to the lowest possible point on the
scale, it is still difficult to count function
points below a level of perhaps 15 func-
tion points [7].

Quite a few maintenance tasks involve
changes that are either a fraction of a
function point, or may at most be less
than 10 function points or about 1,000
COBOL source code statements.
Although normal counting of function
points is not feasible for small updates, it
is possible to use the backfiring method or
converting counts of logical source code
statements into equivalent function points.
For example, suppose an update requires
adding 100 COBOL statements to an
existing application. Since it usually takes
about 105 COBOL statements in the pro-
cedure and data divisions to encode one
function point, it can be stated that this
small maintenance project is about one func-
tion point in size.

If the project takes one work day con-
sisting of six hours, then at least the
results can be expressed using common
metrics. In this case, the results would be
roughly six staff hours per function point.
If the reciprocal metric function points per
staff month is used, and there are 20 work-
ing days in the month, then the results
would be 20 function points per staff month.

Best and Worst Practices in
Software Maintenance
Because maintenance of aging legacy soft-
ware is labor intensive, it is quite impor-
tant to explore the best and most cost
effective methods available for dealing
with the millions of applications that cur-

6 CROSSTALK The Journal of Defense Software Engineering December 2007

Maintenance Factors Plus
Range

Maintenance specialists 35%
High staff experience 34%
Table-driven variables and data 33%
Low complexity of base code 32%
Test coverage tools and
analysis

30%

Code restructuring tools 29%
Reengineering tools 27%
High-level programming
languages

25%

Reverse engineering tools 23%
Complexity analysis tools 20%
Defect tracking tools 20%
Mass update specialists 20%
Automated change control tools 18%
Unpaid overtime 18%
Quality measurements 16%
Formal base code inspections 15%
Regression test libraries 15%
Excellent response time 12%
Annual training of > 10 days 12%
High management experience 12%
Help-desk automation 12%
No error prone modules 10%
Online defect reporting 10%
Productivity measurements 8%
Excellent ease of use 7%
User satisfaction measurements 5%
High team morale 5%
Sum 503%

Software Maintenance Courses Days Sequence

Error Prone Module Removal 2 00 1

Table 4: Impact of Key Adjustment Factors on
Maintenance (sorted in order of maximum posi-
tive impact)

® Capability Maturity Model and CMM are registered in the
U.S. Patent and Trademark Office by Carnegie Mellon
University.

Geriatric Issues of Aging Software

rently exist. The sets of best and worst
practices are not symmetrical. For exam-
ple, the practice that has the most positive
impact on maintenance productivity is
the use of trained maintenance experts.
However, the factor that has the greatest
negative impact is the presence of error-
prone modules in the application that is
being maintained.

Table 4 illustrates a number of factors
which have been found to exert a benefi-
cial positive impact on the work of updat-
ing aging applications and shows the per-
centage of improvement compared to
average results.

At the top of the list of maintenance
best practices is the utilization of full-time,
trained maintenance specialists rather
than turning over maintenance tasks to
the untrained generalists. Trained mainte-
nance specialists are found most often in
two kinds of companies: 1) large systems
software producers such as IBM, and 2)
large maintenance outsource vendors.
The curricula for training maintenance
personnel can include more than a dozen
topics and the training periods range
from two weeks to a maximum of about
four weeks.

Since training of maintenance special-
ists is the top factor, Table 5 shows a
modern maintenance curriculum such as
those found in large maintenance out-
source companies.

The positive impact from utilizing
maintenance specialists is one of the rea-
sons why maintenance outsourcing has
been growing so rapidly. The mainte-
nance productivity rates of some of the
better maintenance outsource companies
is roughly twice that of their clients prior
to the completion of the outsource agree-
ment. Thus, even if the outsource vendor
costs are somewhat higher, there can still
be useful economic gains.

Let us now consider some of the fac-
tors that exert a negative impact on the
work of updating or modifying existing
software applications. Note that the top-
ranked factor that reduces maintenance
productivity, the presence of error-prone
modules, is very asymmetrical. The
absence of error-prone modules does not
speed up maintenance work, but their
presence definitely slows down mainte-
nance work.

In general, more than 80 percent of
latent bugs found by users in software
applications are reported against less than
20 percent of the modules. Once these
modules are identified then they can be
inspected, analyzed, and restructured to
reduce their error content down to safe
levels.

Table 6 summarizes the major factors
that degrade software maintenance per-
formance. Not only are error-prone mod-
ules troublesome, but many other factors
can degrade performance too. For exam-
ple, very complex spaghetti code is quite dif-
ficult to maintain safely. It is also trouble-
some to have maintenance tasks assigned
to generalists rather than to trained main-
tenance specialists.

A common situation that often
degrades performance is lack of suitable
maintenance tools, such as defect tracking
software, change management software,
test library software, and so forth. In gen-
eral, it is easy to botch-up maintenance
and make it such a labor-intensive activity
that few resources are left over for devel-
opment work.

The last factor in Table 6, no unpaid
overtime, deserves a comment. Unpaid
overtime is common among software
maintenance and development personnel.
In some companies it amounts to about
15 percent of the total work time.
Because it is unpaid it is usually unmea-
sured. That means side-by-side compar-
isons of productivity rates or costs
between groups with unpaid overtime
and groups without will favor the group
with unpaid overtime because so much of
their work is uncompensated and, hence,
invisible. This is a benchmarking trap for

December 2007 www.stsc.hill.af.mil 7

High team morale 5%
Sum 503%

Software Maintenance Courses Days Sequence

Error-Prone Module Removal 2.00 1

Complexity Analysis and Reduction 1.00 2

Reducing Bad Fix Injections 1.00 3

Defect Reporting and Analysis 0.50 4

Change Control 1.00 5

Configuration Control 1.00 6

Software Maintenance Workflows 1.00 7

Mass Updates to Multiple Applications 1.00 8

Maintenance of Commercial Off-The-Shelf Packages 1.00 9

Maintenance of ERP Applications 1.00 10

Regression Testing 2.00 11

Test Library Control 2.00 12

Test Case Conflicts and Errors 2.00 13

Dead Code Isolation 1.00 14

Function Points for Maintenance 0.50 15

Reverse Engineering 1.00 16

Reengineering 1.00 17

Refactoring 0.50 18

Maintenance of Reusable Code 1.00 19

Object-Oriented Maintenance 1.00 20

Maintenance of Agile and Extreme Code 1.00 21

TOTAL 23.50

Table 5: Sample Maintenance Curricula for Companies Using Maintenance Specialists

Maintenance Factors Minus
Range

Error-prone modules -50%
Embedded variables and data -45%
Staff inexperience -40%
High complexity of base code -30%
Lack of test coverage analysis -28%
Manual change control methods -27%
Low-level programming
languages

-25%

No defect tracking tools -24%
No mass update specialists -22%
Poor ease of use -18%
No quality measurements -18%
No maintenance specialists -18%
Poor response time -16%
Management inexperience -15%
No base code inspections -15%
No regression test libraries -15%
No help-desk automation -15%
No on-line defect reporting -12%
No annual training -10%
No code restructuring tools -10%
No reengineering tools -10%
No reverse engineering tools -10%
No complexity analysis tools -10%
No productivity measurements -7%
Poor team morale -6%
No user satisfaction
measurements

-4%

No unpaid overtime 0%
Sum -500%

Table 6: Impact of Key Adjustment Factors on
Maintenance (sorted in order of maximum nega-
tive impact)

Software Sustainment

the unwary. Because excessive overtime is
psychologically harmful if continued over
long periods, it is unfortunate that unpaid
overtime tends to be ignored when
benchmark studies are performed.

Given the enormous amount of
effort that is now being applied to soft-
ware maintenance, and which will be
applied in the future, it is obvious that
every corporation should attempt to
adopt maintenance best practices and avoid
maintenance worst practices as rapidly as
possible.

Software Entropy and Total
Cost of Ownership
The word entropy means the tendency of
systems to destabilize and become more
chaotic over time. Entropy is a term from
physics and is not a software-related
word. However, entropy is true of all
complex systems, including software. All
known compound objects decay and
become more complex with the passage
of time unless effort is exerted to keep
them repaired and updated. Software is
no exception. The accumulation of small
updates over time tends to gradually
degrade the initial structure of applica-
tions and makes changes grow more dif-
ficult over time.

For software applications, entropy has
long been a fact of life. If applications are
developed with marginal initial quality
control they will probably be poorly
structured and contain error-prone mod-
ules. This means that every year, the accu-
mulation of defect repairs and mainte-
nance updates will degrade the original
structure and make each change slightly
more difficult. Over time, the application
will destabilize and bad fixes will increase
in number and severity. Unless the appli-
cation is restructured or fully refurbished,
it eventually will become so complex that
maintenance can only be performed by a
few experts who are more or less locked
into the application.

By contrast, leading applications that
are well structured initially can delay the
onset of entropy. Indeed, well-structured
applications can achieve declining mainte-
nance costs over time. This is because
updates do not degrade the original struc-
ture, as happens in the case of spaghetti
bowl applications where the structure is
almost unintelligible when maintenance
begins.

The total cost of ownership of a soft-
ware application is the sum of six major
expense elements: 1) the initial cost of
building an application, 2) the cost of
enhancing the application with new fea-

tures over its lifetime, 3) the cost of
repairing defects and bugs over the appli-
cation’s lifetime, 4) the cost of customer
support for fielding and responding to
queries and customer-reported defects, 5)
the cost of periodic restructuring or refac-
toring of aging applications to reduce
entropy and thereby reduce bad-fix injec-
tion rates, and 6) removal of error-prone
modules via surgical removal and redevel-
opment. This last expense element will
only occur for legacy applications that
contain error-prone modules.

Similar phenomena can be observed
outside of software. Hypothetically, if
you buy an automobile that has a high
frequency of repair as shown in
Consumer Reports and you skimp on
lubrication and routine maintenance, you
will fairly soon face some major repair
problems – usually well before 50,000
miles. By contrast, if you buy an automo-
bile with a low frequency of repair as
shown in Consumer Reports and you are
scrupulous in maintenance, you should be
able to drive the car more than 100,000
miles without major repair problems.

Summary and Conclusions
In every industry, maintenance tends to
require more personnel than building new
products. For the software industry, the
number of personnel required to per-
form maintenance is unusually large and
may soon top 70 percent of all technical
software workers. The main reasons for
the high maintenance efforts in the soft-
ware industry are the intrinsic difficulties
of working with aging software. Special
factors such as mass updates that began
with the roll-out of the Euro and the
Y2K problem are also geriatric issues.

Given the enormous efforts and costs
devoted to software maintenance, every
company should evaluate and consider
best practices for maintenance and
should avoid worst practices if at all pos-
sible.u

References
1. Jones, Capers. “Analyzing the Tools of

Software Engineering.” Software
Productivity Research (SPR) Technical
Report. Burlington, MA: 1999.

2. Jones, Capers. Estimating Software
Costs. 2nd ed. McGraw Hill, 1998.

3. Jones, Capers. Software Quality –
Analysis and Guidelines for Success.
Boston, MA: International Thomson
Computer Press, 1997.

4. Jones, Capers. “Program Quality and
Programmer Productivity.” IBM
Technical Report. TR 02.764. San Jose,
CA: IBM, 1977.

5. Jones, Capers. Software Assessments,
Benchmarks, and Best Practices.
Boston, MA: Addison Wesley Longman,
2000.

6. Jones, Capers. The Year 2000 Software
Problem – Quantifying the Costs and
Assessing the Consequences. Reading,
MA: Addison Wesley, 1998.

7. Jones, Capers. Applied Software
Measurement. 2nd ed. McGraw Hill,
1996.

Additional Reading
1. Arnold, Robert S. Software Reengi-

neering. IEEE. Los Alamitos, CA:
Computer Society Press, 1993.

2. Arthur, Lowell Jay. Software Evolution
– The Software Maintenance
Challenge. New York: John Wiley &
Sons, 1988.

3. Gallagher, R.S. Effective Customer
Support. Boston, MA: International
Thomspon Computer Press, 1997.

4. Kan, Stephen H. Metrics and Models
in Software Quality Engineering.
Reading, MA: Addison Wesley, 2003.

8 CROSSTALK The Journal of Defense Software Engineering December 2007

About the Author

Capers Jones is cur-
rently the chairman of
Capers Jones and Asso-
ciates, LLC. He is also
the founder and former
chairman of SPR, where

he holds the title of Chief Scientist
Emeritus. He is a well-known author and
international public speaker, and has
authored the books “Patterns of
Software Systems Failure and Success,”
“Applied Software Measurement,” “Soft-
ware Quality: Analysis and Guidelines
for Success,” “Software Cost Esti-
mation,” and “Software Assessments,
Benchmarks, and Best Practices.” Jones
and his colleagues from SPR have col-
lected historical data from more than 600
corporations and more than 30 govern-
ment organizations. This historical data is
a key resource for judging the effective-
ness of software process improvement
methods. The total volume of projects
studied now exceeds 12,000.

Software Productivity
Research, LLC
Phone: (877) 570-5459
Fax: (781) 273-5176
E-mail: capers.jones@spr.com,

info@spr.com

December 2007 www.stsc.hill.af.mil 9

In mid-2007, an article entitled “Lockheed
Martin Hopes F-35 Leads to

Maintenance Revolution” [1] was released
through internet news outlets. The article
stated the following:

Lockheed Martin ... is designing a
new kind of maintenance program
for the $300 billion F-35 Joint Strike
Fighter project, which company
officials say could set a new standard
for military aircraft operations. The
U.S.-led, nine-nation fighter pro-
gram has “performance-based logis-
tics” built into its purchase plan, giv-
ing contractors a big role in mainte-
nance management. ... Lockheed
Martin says this maintenance strate-
gy means that logistical support will
make up about 50 percent of total
program costs, compared to 67 per-
cent of total costs under a less cen-
tralized strategy ... Under the main-
tenance plan, F-35 owners will pay
for anticipated operating time. ...
Based on how much the aircraft are
expected to fly, Lockheed Martin
will manage parts inventory, plan
overhaul schedules and train the mil-
itary crews who support aircraft
operations. ... The F-35 program
marks the first time an entire aircraft
has used a performance-based logis-
tics plan. Such pay-by-the-flight-
hour maintenance strategies are
more common for component sys-
tems, or commercial jet operations.

The ramifications of this maintenance rev-
olution to software engineering and manage-
ment are extensive. Initial planning for sus-
tainment of F-35 software began in 2002.
In 2005, however, the Office of the
Secretary of Defense confirmed that a per-
formance-based sustainment approach
would be applied to the F-35 Joint Strike
Fighter (JSF) program. This decision
focused the planning phase and allowed
more detailed analysis to begin. The results
of the analysis to date are reviewed in this

article. These results are shaping the
approach to F-35 software sustainment in
order to support air system performance
and life-cycle cost savings objectives.

F-35 Program Overview
The F-35 Air System consists of the Air
Vehicle (AV), including the propulsion sys-
tem and the Autonomic Logistics (AL) sys-
tem. The AV is a three-variant family of
fifth-generation1 strikefighter aircraft con-
sisting of the F-35A Conventional Take-off
and Landing (CTOL), F-35B Short Take-
off Vertical Landing (STOVL), and F-35C
Carrier Variant (CV).

A high degree of designed-in common-
ality will exist among the three variants (e.g.,
engines, avionics, crew station, subsystems,
suspension, and release equipment and
structure). CTOL operations will be a com-
mon capability among the variants with
unique capabilities for the CV (e.g., catapult
and arresting gear compatibility) and
STOVL (e.g., vertical launch and recovery,
and ski jump compatibility) variants. Key

features include a blend of supportable low
observable technologies, highly integrated
mission systems, interchangeable propul-
sion systems, interoperability and internal
and external carriage of stores. Other exam-
ples of commonality include Prognostics
and Health Management systems, Institute
of Electrical and Electronics Engineers
(IEEE) 1394 aircraft bus design [2], and a
cockpit incorporating advanced on-board
and off-board sensor fusion. Each variant
will provide an adverse weather, day/night
capability to effectively execute operational
missions.

The F-35 AV operates in concert with
AL, including AL Information System
(ALIS), which uses prognostics and health
information from the AV to enable proac-
tive maintenance. AL also features a training
system which is concurrent with aircraft
versions, missions, and maintenance tasks.
And, F-35 AV and ground systems are
designed to interoperate with the net-cen-
tric combat and logistics environments
required for modern combat operations.

Performance-Based Software Sustainment
for the F-35 Lightning II

The complexity and sophistication of F-35 Air System software and the multiplicity of F-35 missions, versions, and cus-
tomers, combined with a performance-based contract structure, present unprecedented software sustainment challenges.
Understanding how F-35 software will be sustained is the focus of ongoing analysis and planning. This article describes some
of the revolutionary conclusions and products of that analysis and provides a look forward to performance-based sustainment
of software for the multinational F-35 fleet.

Lloyd Huff and George Novak
Lockheed Martin Aeronautics

Mission Systems
23%

Non-Deliverable
17%

Autonomic
Logistics
Information
System
11%

Training and Support
34%

Vehicle
Systems
9%

Prognostics and
Health Management

2%

Offboard Mission
Support
4%

Lab
Ground/Non-Deliverable

17%

Air Vehicle
34%

Autonomic Logistics
Ground/Deliverable

49%

Figure 1: Estimated F-35 Software Sustainment Baseline

Software Sustainment

The air system software configuration
present at the end of the system develop-
ment and demonstration phase of the pro-
gram forms the software sustainment
baseline. This baseline, consisting of AV,
AL systems, and lab software is currently
estimated to be approximately 20 million
source lines of code. A break-out by cate-
gory is shown in Figure 1 (see previous
page). Maintaining maximum commonali-
ty of this software across all variants and
versions is key to achieving program
affordability goals.

Figure 2 overlays the relationship of
planned F-35 program phases (top of fig-
ure) to a standard product life cycle (center),
and to the steps involved in development
and delivery of product support (bottom of
figure), through the end of program. The
JSF Development and Low Rate Initial
Production (LRIP) phases of the program
ensure that the Air System and its support
systems are mature as Full Rate Production
(FRP) and Initial Operation Capability
thresholds are reached. Software sustain-
ment plans and estimates, for the In-Service
portion of Figure 2, extend 50 years.

Performance-Based
Contracting
The F-35 program includes partner partici-
pation by the U.S. Air Force, Navy, and
Marine Corps; the United Kingdom; Italy;
the Netherlands; Turkey; Canada; Australia;
Denmark; and Norway. Additional foreign
military sales are under consideration.
Warfighters from these militaries will chan-
nel their needs through the JSF Program
Office (JPO). A joint agreement on F-35
production, sustainment and follow-on
development will guide the evolution of the
Air System, and sets ground rules for part-
ner participation.

The JPO is the single point of contrac-
tual direction from warfighters to JSF prin-
cipal partners, and to propulsion system
contractors. JSF principal partners include
Lockheed Martin Aeronautics, (the Product
Support Integrator [PSI]), Northrop
Grumman, and BAE SYSTEMS. The PSI
is, in turn, responsible for managing the F-
35 global industrial base of United States
and international suppliers and depots.

The performance-based contracting
model can be visualized as a loop, which
begins and ends with the warfighters and
flows through the JPO, the PSI, and the
global industrial base. Warfighters express
their needed capabilities or changes to the
JPO, along with their required performance
levels expressed in terms of mission effec-
tiveness, aircraft availability, sorties per
month, etc. Performance-based contracts
from JPO then transfer the risk and respon-
sibility to provide specified performance
levels to the PSI and to the industrial base.
Metrics quantify air system performance
and incentives or penalties. These perfor-
mance metrics are the basis for a variable
pricing component, referred to as power by
the hour. Payment, under performance based
contracting, is thus based on usage instead
of breakage. Additionally, price improve-
ment targets/ curves are established to drive
reduction in cost over the term of a con-
tract. In the event that design changes are
implemented to improve performance,
resulting cost reductions are shared between
customers (in reduced price), and industry,
(in increased profit). The point of perfor-
mance-based contracts is encapsulated in
the term Performance Based Outcomes
(PBO). Warfighters are now contracting for an out-
come, or a result, as opposed to contracting for
repairs, replacements, supplies, inventory, shipment,
or services.

Managing Software in a
Performance-Based
Environment
Just as performance of the F-35 Air System
is predicated on software, so is the success
of performance-based contracting. Soft-
ware is viewed as a crucial commodity
among many that must be managed for pre-
dictability. This article will proceed to exam-
ine the keys to successful sustainment of
software in a PBO environment. First, how-
ever, the PBO software sustainment domain
will be scoped by reviewing boundaries, def-
initions, and success criteria.

As an entry point to analysis of software
sustainment, a boundary graphic (Table 1),
was produced to delineate software services
funded under PBO, as opposed to that
funded otherwise. To summarize the graph-
ic, any software sustainment action taken to
maintain the delivered software baseline
falls within PBO; any software sustainment
action which adds or changes functionality
to the software baseline falls outside of PBO.

These boundaries, however, must be
accompanied by precise definitions of soft-
ware changes, releases, and support services.
Software changes are defined in terms of
priority (routine, urgent, and emergency) and
purpose (corrective, adaptive, perfective, new
capability, performance initiative, technolo-
gy sustainment, or technology insertion).
Software release types are defined in terms
of size and tempo (such as major or minor
block releases, AV maintenance updates, or
asynchronous releases of AL software).
Typical timespans for development are
associated with software change and release
categories. These values form the basis for
sustainment cost models and a single, inte-
grated master sustainment plan.

Measurement and analysis of F-35 soft-
ware performance will be driven by perfor-
mance-based metrics derived from
Performance-Based Agreements between
the JPO and the warfighters. The top-level
metrics are decomposed into a metrics tax-
onomy. This metrics taxonomy encompass-
es all influences upon the top-level PBO
metrics. Accordingly, software performance
is measured and analyzed to quantify its
operational performance. The lower-tier
software metrics reveal the influence of
software on F-35 air system PBO metrics
and serve to initiate improvements in per-
formance and predictability. Table 2 pro-
vides a look at how software might influ-
ence air system performance and how such
influences will be tracked.

Keys to Successful PBO
Sustainment of F-35 Software
As stated earlier, the ramifications of per-

10 CROSSTALK The Journal of Defense Software Engineering December 2007

Mission Systems
23%

Non-Deliverable
17%

Autonomic
Logistics
Information
System
11%

Training and Support
34%

Vehicle
Systems
9%

Prognostics and
Health Management

2%

Offboard Mission
Support
4%

Lab
Ground/Non-Deliverable

17%

Air Vehicle
34%

Autonomic Logistics
Ground/Deliverable

49%

JSF Development

LRIP FRP

Acquisition/Development
Identity
Military
Need

Develop
Equipment
Concept

Feasibility,
Design,

Production

Support
and Monitor

Use
Dispose

Develop
Support
Strategy

Terminate
Support

Determine/
Deliver
Support

Maintain
Support

Changes

In-Service

2013

2007

Figure 2: Mapping of Standard Life-Cycle Phases to the F-35 Program

Performance-Based Software Sustainment for the F-35 Lightning II

formance-based contracting to F-35 soft-
ware are far-reaching. Looking forward
through 2063, factoring in the rate of tech-
nological change and considering security
and safety ramifications, sustainment of F-
35 software quickly moves from far-reaching
to prodigious. As such, the following eight key
steps are being taken to manage this com-
modity.

1. Strive for Commonality
The JSF program, from its inception, has
been built upon the following four pillars:
affordability, lethality, survivability, and
supportability. The extent to which a com-
mon software baseline is retained across F-
35 variants and F-35 international partners
will directly affect overall affordability and
supportability. While air system software is
tailorable and compatible with each own-
ing service’s support environments, con-
tinued emphasis on commonality will max-
imize affordability and supportability for
all system users. A common solution,
employing minimal infrastructure, pro-
vides best value sustainment capability at
minimum cost to all parties.

The ultimate goal of all participants,
therefore, is to reach consensus on a com-
mon sustainment solution and, thereby,
minimize the incidence of multiple sys-
tem/software configurations. However,
some unique capabilities will be necessary
to satisfy specific operational needs,
address sovereign requirements, and allevi-
ate political and industrial concerns.
Unique software capabilities will typically

occur in two areas: in the AV Mission
Systems software configuration (specifical-
ly, in weapons controls, pilot-vehicle inter-
face, and communications/interoperabili-
ty), or as additions to the F-35 software
integration and test supporting infrastruc-
ture. In either event, F-35 partner coun-
tries will have the opportunity to have their
changes considered for inclusion in the
common baseline before steps are taken to
assess the cost and impacts of a unique
software change. Any unique functionality
will be encapsulated to minimize re-verifi-
cation expense and the cost will be borne
by the partner/partners involved on a pay-
to-be-different basis.

2.Apply Industrial Engineering
Practices to Software
Many parameters must be considered to
plan and manage the performance-based F-
35 software sustainment domain with a
globally dispersed, multinational future
fleet. These parameters include the frequen-
cy and quantity of software changes, the
number of versions, and the time required
for development, validation, and distribu-
tion. AV load times are important, even
more so when viewed over a 50-year period.
In this context, F-35 software sustainment
emerges as an industrial engineering field,
where efficiency, consistency, the elimina-

December 2007 www.stsc.hill.af.mil 11

• Maintenance
– Corrective Maintenance
– Urgent and Emergency Corrections

• Performance Initiatives
– Operational Administration
– Day-to-Day Administrative Support

• Sustaining Engineering
– Planning
– Studies
– Standing Boards, Configuration

Management
– Needs Analysis
– Lab and Development
– Environment/Infrastructure
– Programming Infrastructure
– Field Deficiency Assessment

• Technology Sustainment

• New Capability
• Technology Insertion
• Adaptive Change
• Perfective Change
• Urgent Operational Need
• Emergency Operational Need
• Production Retrofit

Covered by Follow-On
Development ContractCovered by PBO Contract

Table 1: Performance-Based Contracting Boundary

Readiness/ • Aircraft Availability • Aircraft Downtime (Software)
Availability • Mission Capable Aircraft Availability (AA) Rate • Software Mission Capability

Mission • Mission Effectiveness • Primary Task Not Accomplished (Software)
Effectiveness – Primary Task Not Accomplished; System Condition • Secondary Task Not Accomplished (Software)

– Secondary Task Not Accomplished; System Condition

Required Sorties • Percent Sorties Flown • Percent Sorties Not Flown Due to Software
and Flying Hours • Percent Flying Hours Flown • Percent Flying Hours Not Flown Due to Software
Accomplished (* Flown *Ground Abort *Cancelled)

Logistics • Logistics Footprint Data • Support Equipment Change Due to Software
Footprint Total Change = – Support Equipment Size Change Due to Software

Support Equipment Change + – Support Equipment Quantity Change Due to Software
Personnel Change • Personnel Change Due to Software

– Direct Manpower Change Due to Software
– Other Manpower Change Due to Software

Military Level • Cannibalizations per 1,000 Flight Hours (FH) • No Software Metric Applicable
of Effort • Maintenance Man-Hours per FH • Software Maintenance Man-Hours per Flight Hour

• Maintenance Man-Hours per FH (A/C Subsystem) • Software Maintenance Man-Hours per Flight Hour
(A/C Subsystem)

Software
Metrics

Top-Level
PBO Metrics

Performance
Criteria

Table 2: Software Influence on Performance-Based Metrics

Software Sustainment

tion of waste, and a solid understanding of
capacity must be achieved. To help bring
order and quantification to the F-35 soft-
ware industry, modeling and measurement
are being employed.

An end-to-end software sustainment
process model supports the business case
analysis of F-35 software sustainment. The
model is expressed as an event-driven
process model using the Architecture of
Integrated Information Systems modeling
tool (ARIS). ARIS was selected based on its
features, its standardization within
Lockheed Martin, and its use in develop-
ment of interfacing models (F-35 AL oper-
ation guides, software integration and test
lab modeling, system build, software load-
ing processes, and software distribution).
The software sustainment model starts with
the field report of a software defect and
ends with measurement of performance of
the delivered, operational software solution.
The model provides a means to understand
tasks and capacity constraints, and supports
estimation of sustainment costs.

An example analysis area within the
model is the process of system build.
System build is the packaging of hundreds
of lower-tier software products to create a
release product set. A complete air system
build package is a single, deliverable soft-
ware product (end item) to the fleet, for
installation and operation. It is an organized
assembly of vehicle system, mission system,
and AL software, along with release docu-
mentation, flight clearance, technical data,
and other supporting version information
to facilitate identification and distribution.
System build is a process that will be per-
formed many times during each mainte-
nance release cycle and is critical to both the
delivery timeline and overall load integrity.

Tight controls are applied to this crucial
handover point. The system build/final soft-
ware integration process is dependent upon
safeguards and controls imposed upon

lower-tier software builds. All required cer-
tifications, qualifications, formats, and
approvals must be applied throughout the
software build hierarchy. Accordingly, three
checkpoints/readiness gates were estab-
lished to ensure that files and artifacts
obtained for system build are completed,
correctly formatted, fully described, and
duly authorized. The gates affirm that all
required software components, along with
related files or data, are available and have
been properly identified, are functionally
acceptable, have achieved all required certi-
fications and qualifications, and that inter-
faces comply with applicable requirements
and descriptions. Transfer of files and arti-
facts through these gates are controlled
with checklists, which specify criteria and
are administered through a review and
approval process. To the extent possible,
additional safeguards have been incorporat-
ed in tools and workflows.

Apart from measuring the integrity of the
system build process, a set of metrics is
maintained to enable capacity planning for
system build. As releases are produced, span
times, touch times, execution times, delay
times, and total effort metrics are tracked
for routine and urgent builds. The results
are synthesized into cost estimates and
process improvement initiatives.

3. Engage Customers
The F-35 software life cycle was planned in
progressive stages. Each stage engaged
users and partner country subject matter
experts. First, U.S., U.K., and international
standards for software maintenance and
support, including IEEE, Society of
Automotive Engineers, and military stan-
dards were canvassed to form a foundation
for sustainment planning.

Next, fact-finding was accomplished
through a benchmarking study of software
maintenance operations across 14 military
aircraft programs. A list of software mainte-
nance operations willing to share their
expertise is shown in Table 3.

A questionnaire was developed by F-35
Integrated Product Teams (IPTs). The
benchmarking study manager used the
questionnaire to conduct interviews with 39
representatives from the 14 software main-
tenance programs. The information
obtained from these interviews was com-
piled and summarized in a report. The study
served to identify practices which required
consideration for adoption, or avoidance, by
the F-35 program. It affirmed the impor-
tance of thorough planning, establishment
of communication channels and informa-
tion flows, and compliance with clearly doc-
umented processes. The study also revealed
that successful support of multinational

customers requires focused attention on
several elements (e.g., export controls, soft-
ware storage and segregation, and joint
acceptance criteria for software changes).

Following the benchmarking study,
results were incorporated into the software
life-cycle plan for the F-35. The plan was
subject to several rounds of review by gray-
beard panels. Each round of review was
conducted during a 30-day timeframe,
beginning with a kickoff, followed by indi-
vidual preparation. Panelists invested an
average of 8.5 hours to study the plan, rate
the contents, and prepare their preliminary
comments. Deep-dive assignments were
allocated to focus specific panelists on
selected topics. Panels were then convened
for a face-to-face walk-through of topics
over the course of several days, and results
were summarized in outbriefs. More than
1,000 comments and recommendations
were raised and addressed as the result of
the graybeard panels. (Responses to several
of these recommendations are noted
throughout this article.)

Interactions with graybeard panelists
opened the door for visits to seven U.S and
international software maintenance opera-
tions by F-35 representatives. These visits
resulted in useful dialogue with customers
and software sustainment personnel from
11 aircraft programs. Again, a standard list
of topics and questions were used to ensure
consistency.

Finally, with a reasonably mature life-
cycle plan in place, subject matter experts
from partner countries were directly
engaged with JSF contractors in a Software
Maintenance and Sustainment Working
Group (SMS WG), a team of 40 partici-
pants comprised of equal part contractors
and customers. The SMS WG is chartered
to ensure customer expectations relative to
JSF software sustainment are considered in
communicating, planning, documenting,
contracting, and scheduling of affordable
software sustainment solutions.

4.Adopt a Holistic Approach to
Sustainment
Earlier in this article, the contractual
boundaries between PBO maintenance
changes and follow-on development
changes were emphasized. While this is
keenly important from a funding stand-
point, PBO-driven software changes can-
not be viewed independently. PBO-driven
software changes must be weighed in the
context of performance of the global F-35
fleet and balanced for their impact on
overall system change capacity of the F-35
enterprise. Ultimately, the effect of any
software change will be evaluated in terms

12 CROSSTALK The Journal of Defense Software Engineering December 2007

British AV-8B U.S. AV-8B

A-10 B-1B

B-2 C-17

C-130 JE-3

F-15 F-16

F-18 F-22

F-117 P-3C

Readiness/ • Aircraft Availability • Aircraft Downtime (Software)
Availability • Mission Capable Aircraft Availability (AA) Rate • Software Mission Capability

Mission • Mission Effectiveness • Primary Task Not Accomplished (Software)
Effectiveness – Primary Task Not Accomplished; System Condition • Secondary Task Not Accomplished (Software)

– Secondary Task Not Accomplished; System Condition

Required Sorties • Percent Sorties Flown • Percent Sorties Not Flown Due to Software
and Flying Hours • Percent Flying Hours Flown • Percent Flying Hours Not Flown Due to Software
Accomplished (* Flown *Ground Abort *Cancelled)

Logistics • Logistics Footprint Data • Support Equipment Change Due to Software
Footprint Total Change = – Support Equipment Size Change Due to Software

Support Equipment Change + – Support Equipment Quantity Change Due to Software
Personnel Change • Personnel Change Due to Software

– Direct Manpower Change Due to Software
– Other Manpower Change Due to Software

Military Level • Cannibalizations per 1,000 Flight Hours (FH) • No Software Metric Applicable
of Effort • Maintenance Man-Hours per FH • Software Maintenance Man-Hours per Flight Hour

• Maintenance Man-Hours per FH (A/C Subsystem) • Software Maintenance Man-Hours per Flight Hour
(A/C Subsystem)

Software
Metrics

Top-Level
PBO Metrics

Performance
Criteria

Benchmarking Projects

Table 3: Software Maintenance Benchmarking
Participants

Performance-Based Software Sustainment for the F-35 Lightning II

of net worth provided to the warfighter.
F-35 block updates will bundle the deliv-

ery of new functionality and PBO mainte-
nance changes. Block updates will include
a mix of all types of software changes, and
may encompass hardware/subsystem
changes. As IPTs develop and produce the
changes to support F-35 block plans,
capacity planning must allow for both PBO
changes and for new functionality.
Accordingly, the processes, definitions,
requirements and practices for software
maintenance planning were merged with the
F-35 template for software development
plans.

On the plus side, technical solutions are
not constrained. System changes, hardware
changes and software changes, corrections,
and new functionality are all assessed with
respect to the end effect on air system per-
formance and affordability.

On the downside, cost accounting with-
in IPTs responsible for producing correc-
tive changes and new functionality requires
extreme fidelity to ensure PBO effort is dis-
tinguished from follow-on development.

5. Develop Highly Maintainable
Systems and Software
Maintainability of F-35 software is based
upon an AV with an open and scalable
architecture. The open architecture allows for
expansion with minimal impact to
unchanged elements, through use of well-
defined, non-proprietary interfaces and pro-
tocols. Hardware and software elements are
partitioned using loosely coupled, non-time
critical interfaces. A data collection domain,
added to the AV architecture, supports gen-
eral instrumentation and fault isolation
requirements. An isolation layer protects the
software investment from hardware obso-
lescence and facilitates multi-use across air
system domains.

DOORS (Dynamic Object Oriented
Requirements System) databases are popu-
lated with requirements and the rationale
for their selection, including linkages to the
architectural models. Modeling and simula-
tion tools based on architectural constructs
are employed to develop and validate the
requirements and verify the air system.

Object-oriented design results in smaller
configuration items with clearly defined
functionalities. Hardware independence sup-
ports problem accountability and localizes
change. This approach results in minimal
changes to the overall configuration when
adding or deleting functional capability. It
also supports change development at the
lowest level, minimizes the impact of
changes, and enables focused testing. Focused,
model-based component testing provides oppor-

tunities for efficiency in an area that typical-
ly entails high cost.

Architectural and design integrity is
maintained through use of structured, com-
mon systems engineering processes and tools,
which have reduced initial development
costs and will support the efficient long-
term maintenance of designs. The JSF
Systems/Software Engineering Environ-
ment (S/SEE) resides on networks of
computing equipment which connect F-35
customers, contractors and subcontrac-
tors. This shared environment is used
across the entire team to foster a unified
understanding of the open architecture
and its maintenance. The S/SEE includes
commercial off-the-shelf (COTS) Unified
Modeling Language tools, such as
Rhapsody, for enforcing the object-orient-
ed software design and the Signal Interface
Management System2 (SIMS) tool, which
forces full interface definition.

Autocoding with JSF S/SEE tools allows
software code to be developed to Open
System Architecture (OSA) standards. In
specific domains, design tools are used to
capture requirements, model a functional
algorithm and provide source code as an
output to implement the modeled design.

Emphasis is placed on leveraging
COTS, and supportability (aggressive prepara-
tion for tool obsolescence). Configurations
of S/SEE tools are managed in consonance
with air system software releases to ensure
build repeatability and maintainability.

Maintainability of F-35 software is also
supplemented by software reuse and multi-use.
(Reuse is the use of pre-existing code;
multi-use is the reuse of code in multiple
areas.) Software with proven maturity and
reliability, from various sources including
legacy aircraft, government-furnished
equipment, software and databases, differ-
ent F-35 variants, off-the-shelf software,
subsystem software, and third party suppli-
ers, is reused to the extent possible. Reuse
objects are also used as starting points for
development of other, closely related
objects that may be required for different F-
35 domains. Availability and quality of doc-
umentation and source files are considered
as part of reuse analysis and determination.
Preconditioning of software targeted for reuse
may be performed as necessary in order to
ensure maintainability. If candidate code
does not meet OSA standards or object ori-
entation, but provides needed functionality
with an effective design, the design and
algorithms (only) are reused and recoding is
performed using architectural patterns to
develop software which provides better
long-term maintainability and lower total
ownership cost than pre-existing software
that is wrapped to be OSA compliant.

6. Manage Off-the-Shelf Software
The up-front savings realized through use
of off-the-shelf software is frequently off-
set by risk and expense incurred later in
the product life cycle. (Off-the-shelf soft-
ware includes COTS, modified off-the-
shelf [MOTS], government off-the-shelf
[GOTS], freeware, public software, and
related categories of non-developed soft-
ware.) Accordingly, special emphasis was
placed on managing off-the-shelf soft-
ware. Through a collaborative effort with
the JPO, a process document entitled,
“Off-The-Shelf Software in the JSF
Software Lifecycle” [3] was produced and
deployed. The process document describes
actions, over and above standard software
process requirements applicable to software
developed specifically for the JSF Program,
which must be taken to ensure off-the-shelf
software components are configuration
managed throughout their life cycle. It also
identifies the functions/roles responsible
for those actions. Instructions in the
process are partitioned according to their
applicability to a 4-phase life cycle, along
with generally applicable rules, guidelines,
and warnings.

Based on results of a 2005 collaborative
evaluation of process implementation,
“Off-The-Shelf Software in the JSF
Software Lifecycle” was revised and updat-
ed to include a system for classification of
off-the-shelf software projects (small, medi-
um, or large projects) based on specified cri-
teria. Suggested tailoring of process require-
ments based on project category is included
along with examples. The revised process
also incorporates a requirement for a gener-
ation of a compliance matrix by off-the-
shelf software projects, to ensure that all
applicable requirements, including license
and distribution controls, are adequately
addressed.

7. Plan for the Unexpected
Warfighters are keenly interested in how the
F-35 AL global sustainment solution will
respond to urgent operational requests, or
to emergencies. To answer these concerns,
software sustainment scenarios have been
developed by the F-35 SMS WG. The sce-
narios contain sufficient detail to describe
the activities required for non-routine situa-
tions. The scenarios are used to exercise
ARIS process models and make an up-front
determination of the cost and time required
to perform all needed activities.

8.Analyze and Refine the Software
Sustainment Business Case
The eight steps featured in this article have
covered a lot of territory. But the steps

December 2007 www.stsc.hill.af.mil 13

Software Sustainment

14 CROSSTALK The Journal of Defense Software Engineering December 2007

begin and end with a focus on money. Step
1 focused on achieving affordability
through commonality. This final, 8th step
addresses the business case analysis of F-35
sustainment, annual global sustainment
total ownership cost estimates, and the
software cost estimation practices that sup-
port these analyses. Each of these intercon-
nected activities uses a spiral development
approach with each spiral providing
increased fidelity of data, inclusion of deci-
sions from across the program, updates on
configurations and reliability projections,
and comprehensive detailing of the busi-
ness offering.

Business Case Analyses (BCAs) define
F-35 global sustainment policies and
processes. These analyses answer three
basic questions: 1) What individual tasks
must be performed during sustainment?,
(2) who (government or contractor) should
perform those tasks, based on best value?,
and (3) does the task allocation support
established performance standards and
provide sufficient savings? BCAs address,
for example, a pricing architecture for PBO
sustainment, international taxes and tariffs,
industrial base capacity and responsiveness,
and, of course, software sustainment.

Global sustainment cost estimates are
formulated annually. These estimates inte-
grate estimates from all IPTs, functions,
team member companies, and subcontrac-
tors involved in the F-35 global sustain-
ment solution and the pilot program for
performance-based sustainment. Annual
cost estimates are consistently produced,
fact-based, and supportable. They are rec-
onciled with the JPO affordability cost ana-
lysts and are finalized and formally
approved at JSF cost summit events. The
integrity of these annual global sustainment
cost estimates is critical to the success of
affordable, PBO sustainment of the F-35
fleet.

Parametric software sustainment cost
estimates are developed for inclusion in the
annual global sustainment estimates using
output from the System Evaluation and
Estimation of Resources – Software
Estimating Model (SEER-SEM) tool.
Software sustainment cost estimates align
with Cost Analysis Improvement Group
Element 6.5, “Software Maintenance
Support.” They are not, however, fully rep-
resentative of all costs associated with per-
formance-based software sustainment and
are subject to ongoing refinement and
updates. Updates provide greater detail and
direct estimates for software integration
and test activities, software lab keep warm
costs, and greater fidelity with respect to
license costs for off-the-shelf software
included in deliverable F-35 software prod-

ucts. In the absence of actual data, ground
rules and assumptions are documented and
version-controlled to describe cost areas
which are included in, or excluded from,
the F-35 software sustainment business
case.

Finally, long-term software sustainment
cost estimates entail software maintenance
and software growth estimates. Once a soft-
ware release (which, as we have seen, will
contain fixes and new functionality) is dis-
tributed to the field, it becomes the new
maintenance baseline and PBO contracting for
when the new release takes effect.

Conclusion
The decision to apply a performance-based
sustainment approach to the F-35 has
caused fundamental changes in the
approach to Air System sustainment.
Traditional roles and responsibilities are
shifting. An increased risk is transferred to
contractors who are now responsible for
system availability and mission success.
This has precipitated a new approach to
software sustainment. While results are
years away, the F-35 software community

has put a foundation in place for PBO soft-
ware sustainment. Construction on that
foundation continues, day by day.u

References
1. Christie, Rebecca. “Lockheed Martin

Hopes F-35 Leads To Maintenance
Revolution.” DOW Jones Newswires 12
June 2007.

2. IEEE. “IEEE Standard for a High
Performance Serial Bus.” IEEE 1394,
1995. “Amendment One.” IEEE 1394a,
2000. “High-Speed Supplement.”IEEE
1394b, 2002.

Notes
1. Fifth Generation Fighter features these

attributes: advanced stealth, information
fusion, high agility, enhanced situational
awareness, new levels of reliability and
maintainability, and network-enabled
operations.

2. SIMS is a Lockheed Martin Aero inter-
nally developed interface management
tool, based on a commercial relational
database and used on multiple aircraft
platforms.

About the Authors

George Novak is a
Lockheed Martin soft-
ware senior staff mem-
ber where he is responsi-
ble for planning the long-
term global sustainment

of software under a performance-based
logistics contracting model. Novak is a
member of the software management
team responsible for air system software
builds and software life-cycle planning
for the F-35 air system, and is co-chair-
man of the F-35 software maintenance
and sustainment working group. He has
held a variety of positions on military
aircraft and commercial telecommunica-
tions programs and has served as a lec-
turer and independent consultant in the
area of software process improvement.
Novak has a master’s of business admin-
istration in industrial management from
the University of Dallas.

Lockheed Martin Aeronautics
P.O. Box 748, MZ 2306
Fort Worth,TX 76101
Phone: (817) 763-3863
Fax: (817) 763-1737
E-mail: george.j.novak@lmco.com

Lloyd Huff is a Lock-
heed Martin senior fel-
low for software and
avionics where he is cur-
rently engaged in the
development of the F-35

software sustainment solution. Recently,
Huff served as director of JSF Software
Management, JSF Software Proposal
Lead, and X-35 STOVL First Flight
Deputy Lead. He has 28 years of aero-
space experience including F-16 multi-
plex buss design, LM Site Lead at Hill
AFB, 50% Software Cost Reduction
Lead, CMM Level 4 Tool Development
Lead, and Principle Investigator for
Multiplex and Fiber Optic Research.
Huff holds bachelor’s and master’s
degrees in computer science from the
University of Kansas.

Lockheed Martin Aeronautics
P.O. Box 748, MZ 1523
Fort Worth,TX 76101
Phone: (817) 821-9196
Fax: (817) 763-1737
E-mail: lloyd.a.huff@lmco.com

December 2007 www.stsc.hill.af.mil 15

In an SOA, a set of loosely coupled
services work together over a network

to provide functionalities to end-users
[1]. The service provider registers infor-
mation about a service at a service reg-
istry. Service consumers can find the ser-
vice from the registry and then invoke
the service through the service interface.

For the Department of Defense
(DoD), a set of GIG Enterprise Services
will provide warfighting, business, and
intelligence capabilities to support opera-
tional missions conducted by various
communities of interest [2]. Examples
include Net-Centric Enterprise Services
(NCES) [3] and Net-Enabled Command
Capability (NECC) [4].

Services in an SOA have well-defined
service interfaces. They also have SLAs
which are parts of the service contracts
that specify the levels of service expect-
ed after deployment. A key aspect of an
SLA is the set of metrics for measuring
performance and quality of service. This
article develops an overarching model of
reference metrics relevant to end-user
experience. It introduces the concept of
a metrics cube that captures the relation-
ship between the metrics which are then
applied to the development of SLAs and
capacity planning.

The reference metrics are important
to the successful implementation,
deployment and sustainment of SOA in
the GIG because of the following:
• They form the basis for combining

metrics across network and comput-
ing infrastructures for services in the
GIG net-centric environment. Since
those infrastructures typically fall
under various responsible entities,
having a basic reference set is critical
to the development of end-to-end
metrics relevant to an end-user’s
experience.

• They relate directly to consumer’s
(end-user) experience using a service.
This includes timeliness, scalability,
availability, and reliability, which are
specified in SLAs.

• They are used throughout a system
engineering life cycle, including
requirement definition, SLA devel-
opment, service design, performance
testing, and SOA sustainment.

Reference Metrics
The reference metrics are collectively
referred to by their symbols as the
TSAR (service Time, Scalability,
Availability, Reliability) metrics. They are
defined in more detail in Table 1.

For synchronous services, such as a
request/response Web service, T is sim-
ply the response time. It is measured
from the time a consumer sends a

request to when the consumer receives a
response. Typically, T will have an aver-
age and a standard deviation. It is the
sum of network latency (including trans-
mission time, propagation time, Internet
protocol delay, and congestion) and time
spent at the service provider (including
local processing time and back-end pro-
cessing time).

For asynchronous services, such as a
messaging service, T is the delivery time.
It is measured from when a publisher
sends a message to when subscribers
receive it. T is typically a distribution
with T_min, T_average, and T_max. A

service-level agreement may guarantee
delivery within a certain T_max.

Scalability (S) measures a service’s
ability to handle growing amounts of
work within the desired time and relia-
bility ranges. Examples are user load
(number of users within a certain time
span), number of requests per unit time,
and size of requests or messages over a
certain time.

Availability (A) is defined as one
minus the percentage of planned and
unplanned service down time. In other
words, it is the combined probability
that a service is up and running. It is
often expressed as a number of nines,
such as 99.9 percent (8.8 hours
down/year). Contribution for A comes
from planned hardware/software main-
tenance, hardware failure of networks
and processors, and software failure due
to fatal defects (e.g. memory leaks).

Finally, Reliability (R) is the percent-
age of service completion with antici-
pated results when the service is avail-
able. Hence if R = 95 percent, the error
rate is 5 percent. Errors generally come
from non-fatal software defects,
requests rejected by load control mecha-
nism (when availability is within the
required range), or message loss during
delivery (e.g., due to congestion or faulty
network hardware). Unexpected results
caused by problems in back-end pro-
cessing (e.g., time out or failure of
dependent services) are also considered
errors. Note that reliability is defined at
the application level. It measures how
reliable a service performs its function
when it is up and running.

The TSAR metrics relate directly to
consumer (end-user) experience with a
service by answering the following ques-
tions: how fast (T), how much/many (S),
how durable (A), and how reliable (R).

Metrics Cube
The TSAR metrics are not all indepen-
dent. In general, as S increases, T goes
up, and R goes down. The plot of T or
R versus S is called a scalability curve.

Reference Metrics for Service-Oriented Architectures

This article presents a set of reference metrics for measuring the quality of services in Service-Oriented Architectures (SOAs).
It introduces the metrics cube and scalability curve and applies them to the development of service-level agreements (SLAs)
and capacity planning. This article also discusses the challenges and approaches for defining and allocating end-to-end metrics
in a net-centric environment such as the Global Information Grid (GIG).

Dr. Yun-Tung Lau
Science Applications International Corporation

“The TSAR metrics relate
directly to consumer
(end-user) experience

with a service by
answering the following
questions: how fast (T),

how much/many (S), how
durable (A), and how

reliable (R).”

16 CROSSTALK The Journal of Defense Software Engineering December 2007

Software Sustainment

Figure 1 shows an example based on a
model with a finite service queue [5]. As
S increases, incoming requests/messages
spend more time waiting in the queue,
causing T to increase. Network latency is
not included in this example. Also, in
Figure 1, R includes the effect of both
software defects and rejected requests
(the latter happens when the number of
requests in the queue reaches an upper
limit). The exact values of the curves in
Figure 1 are not important for the dis-

cussion here. An appendix in the online
version of this article provides further
details about the model.

In Figure 1, S is the rate of service
requests relative to the maximal
throughput µ. Here throughput is
defined as the number of completed
requests per unit time. As S increases
from zero, the throughput increases lin-
early with S. However, as S approaches
one (the rate of service requests
approaching the maximal throughput),

the throughput plateaus at µ and an
increasing fraction of incoming requests
are dropped. This is due to the limited
computing or network infrastructure
supporting the service. The finite queue
model simulates this effect by limiting
the number of requests/messages in the
queue. Below the maximal throughput,
one may use throughput as an approxi-
mate measure for S. This is convenient
since commercial tools typically provide
throughput as one of the measures.

The contributing factors to availabil-
ity do not change as S increases. Thus,
availability can generally be considered a
constant. However, at very high levels of
S, the extremely high demand exhausts
the underlying computing and network
infrastructure for the service, making it
unable to perform any work (similar to a
denial-of-service attack). This leads to
an abrupt drop in availability. For all
practical purposes, it should be deter-
mined experimentally that this situation
does not occur within the expected
range of S. Once this is done, availabili-
ty can be considered independent of S.
The following discussion assumes that
this is true.

To help visualize the scalability behav-
ior of a service, one may define a Metrics
Cube using the minimum and maximum
values of S, T, and R. The boundary S_min
represents the threshold value and corre-
sponds to the lower bound of normal
operation. S_max, on the other hand, is
the objective or peak operation value. As S
increases, the state of a service can be
traced along a scalability curve in the cube,
as shown in Figure 2. The metrics cube is
useful for specifying SLAs. This is dis-
cussed in the next section.

SLAs
The essence of an SLA is to specify a
metrics cube and a required availability
(A) range, as well as the statistical calcu-
lation of the metrics (e.g. average over
an hour, one day, etc.). A nominal
process of developing an SLA follows:
1. Service provider measures the scala-

bility curve for a service.
2. Service consumers submit service-

level requirements, which can be
expressed as a metrics cube and
availability range.

3. Service provider compares scalability
curves with the requirements.

4. Service provider adds or subtracts com-
puting resources to do the following:
a. Optimize the scalability curve

within the metrics cube.
b. Meet the desired availability range.

Metrics Symbols Notes

Service time T Response time for synchronous services. Delivery time
for asynchronous services.

Scalability S Examples are user load and number of requests per
second.

Availability A It includes planned maintenance and unplanned down
time.

Reliability R Due to defects, rejected requests, message loss, etc.

0

5

10

15

20

25

0.0 0.2 0.4 0.6 0.8 1.0

S

T

Reliability

0

0.2

0.4

0.6

0.8

1

1.2

0.0 0.2 0.4 0.6 0.8 1.0

S

R

State of service in
theMetrics Cube

Re
lia
bi
lit
y

T
im
e

Scalability

Service Time

Figure 1: Scalability Curves

Metrics Symbols Notes

Service time T Response time for synchronous services. Delivery time
for asynchronous services.

Scalability S Examples are user load and number of requests per
second.

Availability A It includes planned maintenance and unplanned down
time.

Reliability R Due to defects, rejected requests, message loss, etc.

0

5

10

15

20

25

0.0 0.2 0.4 0.6 0.8 1.0

S

T

Reliability

0

0.2

0.4

0.6

0.8

1

1.2

0.0 0.2 0.4 0.6 0.8 1.0

S

R

State of service in
theMetrics Cube

Re
lia
bi
lit
y

T
im
e

Scalability

Service Time

Figure 2: Metrics Cube

Metrics Symbols Notes

Service time T Response time for synchronous services. Delivery time
for asynchronous services.

Scalability S Examples are user load and number of requests per
second.

Availability A It includes planned maintenance and unplanned down
time.

Reliability R Due to defects, rejected requests, message loss, etc.

0

5

10

15

20

25

0.0 0.2 0.4 0.6 0.8 1.0

S

T

Reliability

0

0.2

0.4

0.6

0.8

1

1.2

0.0 0.2 0.4 0.6 0.8 1.0

S

R

State of service in
theMetrics Cube

Re
lia
bi
lit
y

T
im
e

Scalability

Service Time

Table 1: Reference Metrics for SOAs

Metrics Symbols Notes

Service time T Response time for synchronous services. Delivery time
for asynchronous services.

Scalability S Examples are user load and number of requests per
second.

Availability A It includes planned maintenance and unplanned down
time.

Reliability R Due to defects, rejected requests, message loss, etc.

0

5

10

15

20

25

0.0 0.2 0.4 0.6 0.8 1.0

S

T

Reliability

0

0.2

0.4

0.6

0.8

1

1.2

0.0 0.2 0.4 0.6 0.8 1.0

S

R

State of service in
theMetrics Cube

Re
lia
bi
lit
y

T
im
e

Scalability

Service Time

December 2007 www.stsc.hill.af.mil 17

5. Service provider refines and negoti-
ates the SLA with the consumers
(based on cost, schedule, and other
factors).
In step 4, the scalability curve is

shifted within the metrics cube when
computing resources are changed.
Figure 3 shows a cross-section of the T
and S plane in a metrics cube. If the
upper end of the scalability curve touch-
es the T_max boundary, the SLA may
potentially be violated because the ser-
vice time will exceed the allowed maxi-
mum before S_max is reached. By
adding computing resources (e.g. more
servers), the curve is shifted downward.

However, if overdone, the curve
comes well below T_max at the S_max
boundary, indicating over-engineering
and wasted computing resources; thus,
the optimal configuration is to have the
curve touch the upper corner (or some-
what below it as a reserve). Similarly, the
optimal curve for reliability should
touch the corner at (S_max, R_min). In
terms of the metrics cube in Figure 2,
the optimized scalability curve would
touch the corner labeled with a triangle.

To be compliant with an SLA, the
service provider needs to ensure that
availability is within the required range.
When the service is up and running, the
service provider monitors the metrics
and ensures that they stay within the
required metrics cube.

Closing Remarks
This article defines a set of four refer-
ence metrics (collectively called TSAR
metrics) for measuring the quality of
sustained services in SOAs. It introduces
the concept of a metrics cube, which is
applied to the development of SLAs and
capacity planning of computing
resources.

For example, for NCES, a set of
threshold and objective metrics have
been defined. They are the equivalent of
the minimal and maximal boundaries of
the metrics cube. For NECC, the TSAR
metrics are included in the developer’s
guide [6] and used in the system engi-
neering process, most notably for SLA
development.

An inherent challenge for defining
end-to-end metrics (such as the TSAR
metrics in Table 1) is that they typically
have distributed contributions across
network and computing infrastructures.
Hence the responsibility for ensuring
SLA compliance is shared by multiple
entities in a net-centric environment
such as the GIG. Nevertheless, the ser-
vice provider is normally the primary

sustainment interface to its service con-
sumers. The provider allocates metrics
to its dependent network and computing
service providers, either through subor-
dinate SLAs or by explicitly allocating
portions of a metric to their responsible
entities. The bases of such allocation are
the formulas for combining metrics
from multiple contributors (e.g. service
providers, infrastructures). An appendix
in the online version of this article pro-
vides such formulas.u

Acknowledgment
The comments of John Schumacher
(Principal Systems Engineer at SAIC) on
an early draft of this article are greatly
appreciated.

References1

1. Erl, Thomas. Service-Oriented Archi-
tecture: Concepts, Technology, and
Design. Prentice Hall, 2005.

2. United States. Joint Forces Command
(JFCOM). “Global Information Grid
Capstone Requirements Document.”
JFCOM 134-01. JFCOM, 2001.

3. United States. Defense Information
Systems Agency (DISA). “Initial
Capabilities Document for Global
Information Grid Enterprise Ser-
vices.” DISA, 2004.

4. Assistant Secretary of Defense,
Networks and Information Integra-
tion. “Net-Enabled Command Capa-
bility Milestone A Acquisition De-
cision Memorandum.” Washington:
DoD, 2006.

5. Menascé, Daniel A., and A.F. Virgilio.
“Capacity Planning for Web Services:
Metrics, Models, and Methods.”
Prentice Hall, 2001.

6. “Net-Enabled Command Capability
Developer’s Handbook.” DISA, 2007.

Note
1. Some Web sites quoted here require a

user account for access. Online appli-
cation forms can be found on the sites.
Some require government sponsor-
ship.

2

T

S

Performance below expectation
(potential SLA violation)

Optimum performance
compliant with requirement

Performance exceeds
requirement

Improve performance by
adding computing resources

T_max

T_min

S_maxS_min

Figure 3: Optimization of Scalability Curve

About the Author

Yun-Tung Lau, Ph.D.
is Vice President of
Technology at SAIC. He
has been involved in
large-scale software
architecture, design, and

development for 18 years. Lau has
served as chief architect for many soft-
ware and enterprise architecture pro-
jects, from scientific computing and
electronic commerce to command and
control systems. He also holds a master’s
degree in technology management. Lau
has published many articles in profes-
sional journals, and authored the book
“The Art of Objects: Object-Oriented
Design and Architecture.”

SAIC
5113 Leesburg Pike
STE 200
McLean, VA 22041
Phone: (703) 824-5817
Fax: (703) 824-5836
E-mail: yun-tung.lau@saic.com

Reference Metrics for Service-Oriented Architectures

18 CROSSTALK The Journal of Defense Software Engineering December 2007

Software Sustainment

Scientific and Technical
Information Network
http://stinet.dtic.mil
The Public Scientific and Technical
Information Network (STINET) is
available to the general public, free of
charge. It provides access to citations of
unclassified unlimited documents that
have been entered into the Defense
Technical Information Center’s Tech-
nical Reports Collection, as well as the
electronic full-text of many of these doc-
uments. Public STINET also provides
access to the Air University Library
Index to military periodicals, staff
College Automated Military Periodical
Index, Department of Defense (DoD)
Index to Specifications and Standards,
and Research and Development Descrip-
tive summaries.

The Data and Analysis
Center for Software
www.thedacs.com
The Data and Analysis Center for
Software (DACS) is a DoD Information
Analysis Center. The DACS has been
designated as the DoD Software Infor-
mation clearinghouse that serves as an
authoritative source for state-of-the-art

software information providing technical
support for the software community.
The DACS technical area of focus is soft-
ware technology and software engineer-
ing, in its broadest sense. The DACS is a
central distribution hub for software
technology information sources. The
DACS offers a wide variety of technical
services designed to support the develop-
ment, testing, validation, and transition-
ing of software engineering technology.

Java.net
www.java.net
Java.net is the realization of a vision of a
diverse group of engineers, researchers,
technologists, and evangelists at Sun
Microsystems, Inc. to provide a common
area for interesting conversations and
innovative development projects related
to Java technology. The community con-
tinues to grow with industry associa-
tions, software vendors, universities, and
individual developers and hobbyists join-
ing every day. As they meet, share ideas,
and use the site's collaboration tools, the
communities they form will uncover
synergies and create new solutions that
render Java technology even more valu-
able.

WEB SITESCOMING EVENTS

January 7-10
Hawaii International Conference

on System Sciences
Waikoloa, HI

www.cert.org/secure-coding/
HICSS-41-CSSIS_CFP.html

January 10-12
The 35th Annual ACM SIGPLAN –

SIGACT Symposium
San Francisco, CA

www.cs.ucsd.edu/popl/08/

January 10-12
The 5th IEEE Consumer Communications

and Networking Conference
Las Vegas, NV

www.ieee-ccnc.org/2008/

January 14-16
Soldier Technology US

Arlington, VA
www.soldiertechnologyus.com

January 22-25
Network Centric Warfare 2008

Washington D.C.
www.ncwevent.com

January 30-31
15th Annual Multimedia Computing

and Networking
San Jose, CA

http://mirage.cs.uoregon.edu/mmcn
2008/

April 29-May 2

Systems and Software
Technology Conference

Las Vegas, NV
www.sstc-online.org

COMING EVENTS: Please submit coming events that
are of interest to our readers at least 90 days
before registration. E-mail announcements to:
nicole.kentta@hill.af.mil.

Announcing...

2008
Technology: Tipping the Balance

29 April – 2 May
Las Vegas Hilton Resort, NV

www.sstc-online.org

December 2007 www.stsc.hill.af.mil 19

In today’s software-oriented world, soft-
ware ownership frequently changes. It is

difficult, if not sometimes impossible, to
keep track of who has a certain piece of
software at any given time. This presents a
problem for those who wish to keep the
software internal operations a secret.
Languages such as Java, which preserves a
lot of high-level information in its byte
code, present a problem from the stand-
point of source ownership and securing it
from program de-compilation. Releasing
Java classes can compromise sensitive infor-
mation embedded in the software, such as a
missile intercept computation. Java class
files contain the byte code instructions inter-
preted by the Java Virtual Machine (JVM).
These files are easily read by programs that
can recreate a source file from the class file.
Java obfuscation techniques were developed
to make reverse engineering harder, but
many of these techniques can be defeated.

While Java was developed to be used
on embedded systems, its popularity has
pushed it into the public as a mainstream
language. It is the view of the authors that
if the developers of a program (e.g.
defense industries) do not want its source
code reverse engineered, then Java should
not be used. Java programs cannot be pro-
tected in any manner from reverse engi-
neering. All protection will do is slow
down a determined attacker. In this article,
we describe the three major techniques of
Java obfuscation used in present state-of-
the-art tools.

Commercial obfuscation applications
generally perform three functions to secure
the Java source code. First, extra loops,
jumps, or even additional classes are added
to change the control flow of the program
so that an attacker has extra difficulty in
understanding the program. Second,
Package/Class/Method/Field names are
renamed so they no longer state what they
are for (e.g., field named ‘account_balance’
is now ‘b’). Finally, any text strings con-
tained in the program are encrypted.

Obfuscation Techniques
The following sections describe the three

major techniques of Java obfuscation used
in present state-of-the-art tools.

Control Flow Obfuscation
Control flow obfuscation is a technique
that makes use of additional code and
looping it to make it difficult to understand
what is going on in such a way that causes
an attacker to give up or confuses a tool
into producing undesired results. While
this strength is a good attempt at protec-

tion, there are semi-automated tools, such
as LOCO [1], that allow a human user to
interpret the code to distinguish between
useless code and real code. While control
flow obfuscation is not foolproof, it
increases the difficulty an attacker has
reverse engineering a program.

Name Obfuscation
Name obfuscation is used to effectively
remove any information an attacker would
gain by merely reading the name of fields.
For example, if the original developer
used meaningful names to aid develop-

ment, this would also help the attacker. By
changing the names, the meaning of the
code is harder to understand. This is quite
similar to the problem of decompiling x86
binaries. When decompiling x86 binaries
into an intermediate language, e.g. Register
Transfer Language, an attacker has to fig-
ure out the contents of the accumulator
register and how it is used. This can be
extremely tedious but not impossible.
Similarly, an attacker with a Java class file,
where the names are changed to simple
letters (e.g. ‘b’ or ‘c1’), is faced with a sim-
ilar challenge. The strength of this
method is that it removes a very useful
method of program comprehension from
the hands of an attacker. However, its
weakness is that a human using an interac-
tive deobfuscation environment, possibly
a modified LOCO equivalent program,
can discern what the variable ‘b’ means,
and the program they use could propagate
this new name ‘account_balance’ through-
out the control flow graph where ‘b’ is
used. Name obfuscation raises the level of
difficulty in reverse-engineering, but does
not make it impossible.

String Encryption
String encryption is utilized as an attempt
to secure the code for a limited period of
time. The more sensitive the information
being protected, the stronger the encryp-
tion should be. By eliminating another
source of information, obfuscation pro-
grams use this technique to increase the
level of difficulty in an attempt to prevent
deobfuscation. However, string encryp-
tion is almost useless since the key for
decryption is contained inside the pro-
gram file unless using an external key. It
has been shown that attackers have already
discovered how to decrypt these strings
[2], rendering this obfuscation technique
almost useless. Encryption is useful only if
an external key is used. This, however,
presents the classic key distribution and
management issue. Using an external key
requires securely sharing it via some
mechanism, which is outside the scope of
this article.

A Primer on Java Obfuscation

Java is not a secure language and its increasing use puts sensitive information at risk. While the authors do not recommend
Java software that involves sensitive information, the current reality is that Java is used in these applications. To address this
reality, this article discusses Java obfuscation techniques.

Gordon Evans
Missile Defense Agency

Stephen Torri, Derek Sanders, and Dr. Drew Hamilton
Auburn University

Software Engineering Technology

Control flow
obfuscation is a

technique that makes
use of additional code

and looping it to make it
difficult to understand

what is going on in such
a way that causes an
attacker to give up or
confuses a tool into
producing undesired

results.

20 CROSSTALK The Journal of Defense Software Engineering December 2007

JAVA Byte Code
Java is compiled from source files into
class files containing byte codes that are
later interpreted or compiled into machine
code at runtime in a JVM. The Java class
files present a potential security problem
since simply compiling the Java source
code does not do enough to secure it from
being recovered. Disassembly of the Java
byte code is easy to do with the tools pro-
vided by Sun Microsystems as a part of its
software development kit (SDK). For
example, the following is the classic Hello
World written in Java:

public class Hello {
public static void main (String[]

args)
{
System.out.println(“Hello
World”);
}

}

This example simply prints out the
string saying Hello World to the standard
console window. Compiling this program
with the javac compiler produces a Java
class file called Hello.class. This file is used
with the Java program to produce the
desired results. The Java class file can be
easily disassembled into a human readable
form using the javap [3] disassembler pro-
gram included in the Sun Microsystems
Java Development Kit (JDK).

For example, the following is the out-
put of Hello.class after running javap:

Compiled from “Hello.java”

class Hello extends
java.lang.Object {

Hello();
Code:
0: aload_0
1: invokespecial #1; //Method

java/lang/Object.”<init>”:()V
4: return

public static void
main(java.lang.String[]);

Code:
0: getstatic #2; //Field java/

lang/System.out:Ljava/io/
PrintStream;

3: ldc #3; //String Hello World
5: invokevirtual #4; //Method java/

io/PrintStream.println:
(Ljava/lang/String;)V

8: return
}

We have recovered enough informa-
tion that a developer with a tool such as
the Dava decompiler, (McGill University’s
Java decompiler) included in the Java opti-
mization framework called Soot [4], can
quickly obtain the original source code
seen in the following:

import java.io.*;

class Hello {

Hello() {
super();

}

public static void
main(java.lang.String[] r0) {

System.out.println
(“Hello World”);

}
}
This example is a simple one but it illus-
trates the point. It can be seen that by
merely compiling a Java application with
the Sun JDK will not offer any protection
against decompiling the program. This is
why developers use obfuscation in order
to get some level of protection against
reverse engineering. Obfuscation makes it
harder, but not impossible, to reverse
engineer the code.

JAVA Obfuscation
Obfuscation works by confusing the flow
of the source code so it is difficult to
recover the intent of it. However, in order
to effectively show how obfuscation
works, a complex example is needed. The
following code is a function that takes an
integer value from the command line as an
argument and reports back the list of
Fibonacci1 numbers. For example, running
the command java Fibonacci 5 will give back
the calculated Fibonacci number for 5, 4,
3, and so on.

public class Fibonacci {

public int calculate (int n)
{

int output = 0;

if (n > 1)
{
output = calculate (n – 1)

+ calculate (n – 2);
}
else
{

output = n;
}
return output;

}

public static void main (String[]
inc)
{
if (inc.length > 0)
{

Fibonacci f_ref = new
Fibonacci();

int n =
Integer.parseInt(inc[0]);

while (n != -1)
{
System.out.println

(“Calculated fibonacci
number: “ +
f_ref.calculate (n));

n-;
}
}
return;
}

}

After using javap, the byte code prior
to obfuscation is shown in the following:

public int calculate(int);
Code:
0: iconst_0
1: istore_2
2: iload_1
3: iconst_1
4: if_icmple 26
7: aload_0
8: iload_1
9: iconst_1
10: isub
11: invokevirtual #2; //Method

calculate:(I)I
14: aload_0
15: iload_1
16: iconst_2
17: isub
18: invokevirtual #2; //Method

calculate:(I)I
21: iadd
22: istore_2
23: goto 28
26: iload_1
27: istore_2
28: iload_2
29: ireturn

The commercially available obfusca-
tion program called Zelix Klassmaster is
used to obscure the names of classes,
methods, and variables; encrypt any
strings; and complicate the control flow.
Though the nature of the program is hid-
den and obscured, the byte code is still
easy to read. The important blocks of
obfuscated byte code are explained in the
following:

public int a(int);

Software Engineering Technology

December 2007 www.stsc.hill.af.mil 21

Code:
0: getstatic #56; //Field A:Z
3: istore_3

The previous lines are loading the value of
a static variable from the class A, called Z,
onto the stack. The value is stored into the
third local variable (var_3 = A:Z).

4: iconst_0
5: istore_2

These instructions set the second local
variable to zero (var_2 = 0).

6: iload_1

This instruction loads the value of func-
tion parameter ‘n’ onto the stack.

7: iload_3
8: ifne 50

These instructions are checking to see
if var_3 (the third local variable) is not
equal to zero. If the statement returns true
then it will jump to label #50, otherwise it
continues to label #11. Though not seen
here, at label #50 the variable ‘output’ is
set to the value of variable ‘n’ and
returned.

11: iconst_1
12: if_icmple 49

At this point, the constant integer
value of ‘1’ is loaded onto the stack, which
is used to compare the value of the previ-
ous stack entry ‘n’ to 1. If ‘n’ is less than 1
then it will jump to label #49, otherwise it
continues to label #15. Label #49 is not
shown, but its instruction sets the variable
‘output’ equal to the value of variable ‘n’
and is returned. The two checks at lines 7-
8 and 11-12 that were performed are dif-
ferent from the original check in the un-
obfuscated code to see if variable ‘n’ was
greater than 1. The obfuscation program
has altered the control flow in an attempt
to obscure the nature of the function.

15: aload_0
16: iload_1
17: iconst_1
18: isub
19: invokevirtual #2; //Method

a:(I)I

The function a:(I)I is the original func-
tion called calculate (int n) that returns an
integer result. This byte code loads an
object reference to the variable n, the
value of variable n and a constant integer
value of ‘1’ onto the stack. It then calcu-

lates n-1 and places the result on the stack.
The call to the function a:(I) with the
results is the last step. This is equivalent to
the function call of ‘calculate (|n – 1|).’

22: aload_0
23: iload_1
24: iconst_2
25: isub
26: invokevirtual #2; //Method

a:(I)I

These instructions are similar to the
description above, except the function call
is equivalent to ‘calculate (n – 2).’

29: iadd
30: istore_2

At this point the results of ‘calculate (n
– 1)’ and ‘calculate (n – 2)’ are taken from
the stack, added together and the result is
placed back on the stack. This is similar to
‘calculate (n – 1) + calculate (n – 2)’. The
results are stored in var_2.

31: iload_3
32: ifeq 51
35: getstatic #58; //Field z:Z
38: ifeq 45
41: iconst_0
42: goto 46
45: iconst_1
46: putstatic #58; //Field z:Z

Shown here is a reference to the vari-
able Z from class z. However, notice that
the original program did not contain a sec-
ond class, but the obfuscator has added it
to obscure the meaning. Labels #31-32
compare the value of var_3 to zero. If
var_3 is equal to zero then the value of
var_2 (original variable called ‘output’) is
returned, otherwise, the comparison of
the variable ‘Z’ from the class ‘z’ is com-
pared to zero. If ‘Z’ is equal to zero then
the value of ‘Z’ is set to 1, otherwise zero.
These instructions are inserted by the
obfuscator as do nothing statements to
enhance the security and complicate deob-
fuscation forcing additional work to
obtain the original code.

49: iload_1
50: istore_2
51: iload_2
52: ireturn

Finally, the results of the function call
are returned to the original caller.

Even with obfuscation, anyone with
access to the Java class files has access to
the byte code and hence is capable of re-
versing the obfuscation process. The

LOCO project, which is designed to aide
a security analyst in understanding
obfuscated code, could be used for this
purpose. While the project is designed to
look at instructions on an x86 architec-
ture, a similar project designed for Java
byte code would be much simpler to
implement. This is due to the fact that
the number of instructions that are rep-
resented by Java byte code is consider-
ably less than the number of instruc-
tions for the x86 architecture. The weak-
nesses of obfuscation as shown with
these simple examples illustrate the need
for better protection against reverse
engineering. In addition, the impact of
obfuscation has on the performance of
the software must also be analyzed and
evaluated for acceptability. While many,
if not most, Java developers do not read
Java byte code, a determined adversary
can and will.

Cost of Obfuscation
In order to effectively discuss obfuscation,
the impact of obfuscation on perfor-
mance with normal operations can not be
ignored. Low [5] states that obfuscation
should not alter the behavior of the pro-
gram, which is shown next:

Obfuscating Transformation
Let P τ> P’ be a transformation of a source
program P into a target program P’.

P τ> P’ is an obfuscating transformation, if P
and P’ have the same observable behavior.
More precisely, in order for P τ> P’ to be a
legal obfuscating transformation the following
condition must hold:

• If P fails to terminate or terminates with
an error condition, then P’ may or may
not terminate.

• Otherwise, P’ must terminate and pro-
duce the same output as P.

The authors believe that changes to
the program’s control flow and the use of
string encryption will inadvertently affect
software performance. The degree of the
impact depends on the control flow
obfuscation method and encryption algo-
rithm used. The effect of name obfusca-
tion does not impact the run-time perfor-
mance of the system. To better under-
stand the impact of obfuscation, it must
be shown in terms of runtime in a formal
manner.

Control Flow Obfuscation
Intuitively, obfuscating the control flow of
a Java program should incur some perfor-
mance cost as it is interpreted. Definition

A Primer on Java Obfuscation

Software Engineering Technology

22 CROSSTALK The Journal of Defense Software Engineering December 2007

1 defines a performance measure for con-
trol flow obfuscation delay.

Definition 1: Control Flow Obfuscation
Delay
Let Tocf = Tcf + α be an equation showing
the effects of obfuscation Tocf on original
system performance Tcf by time delay of
control flow obfuscation α. If Tocf ≤ Tcf,
then the obfuscation has either improved
the original performance of the program
or, at a minimum, met the original per-
formance. More accurately, the equation
is Tocf = Tcf + α , where α ≤ 0.
Alternatively, if α is greater than zero,
then the obfuscation has had a negative
effect on system performance.

An embedded system may have hard
real-time constraints which restrict how
much additional delay is allowed. By real-
time we refer to systems which will fail if
the executing software should miss a
deadline. The impact of obfuscation on
the execution of the program would
need to be measured – α in the equation
above – to determine if it is at an accept-
able level that does not degrade the sys-
tem performance or user experience.
That is, if Tocf > TL, where TL is a limit of
a real-time deadline or acceptable delay,
then control-flow obfuscation may pro-
duce more harm than good.

String Encryption
String encryption on the other hand will
definitely not have an obfuscation effect
of zero. In the programs evaluated in [2],
three of them utilized string encryption.
The key used was stored in the program
file along with the decryption code. The
encrypted strings were either kept in the
program’s class files or had extra files
included in the Java jar file.

The time delay caused by decryption
depends on the encryption algorithm,
key length, and the plain text. The origi-
nal program had to access the location in
memory, where the original string was,
and return it to the place in the program

it was used (δ = Tr, where Tr is the
retrieval time). Compare this to the time
it takes to retrieve the encrypted string,
perform the decryption algorithm, and
return the plain text string (δ = Ter + Td

+ Tpr) where Ter is the time to retrieve the
encrypted string, Td is the decryption
time, and Tpr is the time to return the
string to the requester. Therefore, the
time required to process and return the
encrypted string should be greater than
that of a non-encrypted string.

Definition 2: Encrypted String
Obfuscation Delay
Let Tes’ = Tps + δ show the effect of using
encrypted strings, Tes, on system perfor-
mance using plain strings, Tps, by the time
delay for encrypted string decryption, δ.
Then the time delay of decryption
should never be zero (δ > 0), therefore,
Tes ≠ Tps, since the act of decryption is
not an act that cannot be simply dis-
missed as some that can be ignored.
Some amount of time would be required
so it is more accurate to say Tes’ = Tps + δ
where δ > 0. The same restriction as
described in Definition 1 applies. If Tes >
TL, where TL is a limit of a real-time
deadline or acceptable delay, then the
time for decryption of the encrypted
strings is considered a hindrance to
acceptable program operations.

Combined Effects of Control Flow
Obfuscation and String Encryption
The total performance impact of obfus-
cation can be determined by combining
Definitions 1 and 2.

Definition 3: Performance Effect of
Obfuscation
Let T’ = T + α + δ show the effect of
both control flow (α) and string decryp-
tion (δ) have on the original system per-
formance. It is important to consider
both effects on performance since it is
important to not rely solely on one effect

for the protection of a program. Three
effects shown will have an effect on
security as well as an impact on perfor-
mance.

Test Results
Four preliminary tests were conducted to
calculate the performance cost of vari-
ous methods of obfuscation. The tests
were conducted on a 3GHz Pentium 4
system running Fedora Core 6 system
using Java 1.6 to compile the program,
Zelix Klassmaster 5.0 trial version obfus-
cator, and GNU Compiler Collection
4.1.1 20070105 (Red Hat 4.1.1-51) to
compile the driver. A C++ driver pro-
gram was created to run the target Java
class file as the ‘root’ user on the system
for 50 times and calculate the average
number of central processing unit clock
cycles it took to execute the target class
file. The results for the tests can be seen
in Table 1.

The tests show that even for a simple
example the control flow obfuscation
and the string encryption has some
impact on the performance of the sys-
tem. None of the obfuscation methods
improved the performance of the target
application. The impact of obfuscation
must be analyzed as a part of develop-
ment in order to measure the impact on
system performance and user experi-
ence. Further testing and refinement of
these metrics will provide a means for
program managers to evaluate the per-
formance costs of the many different
Java obfuscators on the market (and in
the public domain.)

Conclusion
Obfuscation is a method (albeit imperfect)
to protect the intellectual property rights
of its creators. Obfuscation could also be
thought of as a method of protection
against reverse engineering by making it
difficult for a hacker to obtain a high-level
representation of Java source code in
order to make changes. Obfuscation does
not provide any sort of run-time protec-
tion like watermarking or calculated
checksums at periodic locations.

Organizations need to consider
strongly what information is being
released when a piece of software is dis-
tributed. It cannot be assumed that information
hard-coded into a program will not be retrieved.
This is of considerable importance when
evaluating software for release through
foreign military sales or other coalition
partner arrangements.

For those looking to secure their soft-
ware, there are professional tools available

Test Time
(cpu clock cycles)

Percentage
difference

Unobfuscated Fibonacci 2.7069 x 108 0%

Fibonacci program with aggressive
control flow obfuscation

2.71142 x 108 +0.17%

Fibonacci program with flow
obfuscation string encryption

2.71478 x 108 +0.29%

Fibonacci program with aggressive
control flow obfuscation and flow
obfuscation string encryption2

2.71356 x 10 +0.24%8

Table 1: Obfuscation Tests

A Primer on Java Obfuscation

December 2007 www.stsc.hill.af.mil 23

that make claims of high dependability.
Many companies offer tools for both Java
obfuscation as well as .NET obfuscation.
Additional claims of these tools are that
they reduce package size and increase effi-
ciency. Evaluation of these claims is on
our list of future work.

It is generally agreed that Java can be
reverse engineered. Obfuscation only slows
you down, but obfuscation also increases
the costs of reverse engineering sufficient-
ly to deter many economic motives for
reverse engineering. Anyone who dismisses
obfuscation has probably not tried to
reverse engineer non-trivial programs.
Reverse engineering of militarily sensitive
software is not constrained by the same
economics as commercial software.

Why is Java used in defense software?
Reducing development costs is one rea-
son. Often, after the software has been
delivered, there are compelling reasons to
make the software available under foreign
military sales. It is then too late to observe
that Java should not be used and translat-
ing millions of lines of code of Java into
something else is not a feasible option.
What do you do? Obfuscation certainly
does not solve this problem, but it is an
option that government program man-
agers acquiring software-intensive systems
should be aware of as well as the larger
issue of programming language selection
in terms of software requirements and
design.u

References
1. “LOCO: An Interactive Code

(De)Obfuscation Tool.” ACM SIG-
PLAN 2006 Workshop on Partial
Evaluation and Program Manipu-
lation, 2006.

2. “Cracking String Encryption in Java
Obfuscated Bytecode.” Subere 2006
<www.milw0rm.com/papers/117>.

3. “The Java Class File Disassembler.”
Java Sun <http://java.sun.com/j2se/
1.5.0/docs/tooldocs/windows/javap.
html>.

4. Miecznikowski, J., and L. Hendren.
“Decompiling Java Using Staged
Encapsulation.” Proc. of the 8th
Conference on Reverse Engineering,
2001.

5. Low, D. “Java Control Flow Obfusca-
tion.” Thesis. University of Auckland,
1998 <www.cs.arizona.edu/~collberg
/Research/Students/DouglasLow/>.

Notes
1. The Fibonacci numbers are the

sequence of numbers {Fn}n
∞ = 1

defined by the linear recurrence equation

Fn = Fn-1 + Fn-2 with F1 = F2 = 1. As a
result of the definition, it is conven-
tional to define F0 = 0. (Wolfram Math
Word <http://mathworld.wolfram.
com/FibonacciNumber.html>).

2. The average time of aggressive control
flow obfuscation and string encryption
is most likely due to the fact that the
control flow obfuscation has be opti-
mized in some manner.

About the Authors

Derek Sanders is a
graduate student study-
ing Data Networks and
Information Assurance
with Auburn University.
He is currently pursuing

his masters degree in software engineer-
ing. Sanders’ research interests include
the medium access control layer for
wireless communication, computer and
network security, and a wide selection of
issues related to securing wireless com-
munications.

Computer Science and
Software Engineering
107 Dunstan Hall
Auburn University, AL 36849
Phone: (334) 844-7002
Fax: (334) 844-6329
E-mail: sandede@auburn.edu

Stephen Torri is a doc-
toral candidate at Au-
burn University. He has a
bachelor of science in
accounting, finance, and
computer science from

Lancaster University in the United
Kingdom and a master of science in
computer science from Washington
University in Saint Louis. Torri was an
electronics technician in the U.S. Navy’s
Nuclear Power Program as a reactor
operator aboard the USS Carl Vinson.

Computer Science and
Software Engineering
107 Dunstan Hall
Auburn University, AL 36849
Phone: (334) 844-7002
Fax: (334) 844-6329
E-mail: torrisa@auburn.edu

Gordon Evans retired
from the U.S. Army in
1992 as a Lieutenant Col-
onel. During his military
service, he served in mul-
tiple field artillery, mili-

tary intelligence, and overseas assign-
ments. Since his retirement, Evans has
worked as an on-site consultant to the
Missile Defense Agency (MDA) where
his areas of concentrations include sys-
tems engineering, command and con-
trol, modeling and simulations, interna-
tional programs, and export control and
technology transfers. He has been the
lead MDA designer and investigator for
its modeling and simulation vulnerability
assessment program.

MDA
7100 Defense Pentagon
ATTN: MDA/BC
Washington, D.C. 20301-7100
Phone: (703) 697-4582
Fax: (703) 695-6133
E-mail: gordon.evans.ctr

@mda.mil

John A. “Drew” Ham-
ilton Jr., Ph.D., is an
associate professor of
computer science and
software engineering at
Auburn University and

director of its information assurance lab-
oratory. Prior to his retirement from the
U.S. Army, he served as the first director
of the Joint Forces Program Office and
on the staff and faculty of the U.S.
Military Academy, as well as chief of the
Ada Joint Program Office. Hamilton has
a bachelor’s degree in journalism from
Texas Tech University, masters degrees in
systems management from the Universi-
ty of Southern California and in com-
puter science from Vanderbilt University,
as well as a doctorate in computer sci-
ence from Texas A&M University.

Computer Science and
Software Engineering
107 Dunstan Hall
Auburn University, AL 36849
Phone: (334) 844-6360
Fax: (334) 844-6329
E-mail: hamilton@auburn.edu

24 CROSSTALK The Journal of Defense Software Engineering December 2007

Advancing Defect Containment to Quantitative
Defect Management

The defect containment measure is traditionally used to provide insight into project success (or lack thereof) at capturing defects
early in the project life cycle, i.e., the time when defect repair costs are at their minimum. Although the measure does provide
insight into the effectiveness of early defect capture techniques (such as peer reviews), defect containment in its most common
form (percentage of defects captured) is a lagging indicator as its ultimate value cannot be known until a project is complete.
At that point, it is too late for a project to take corrective action. Using raw defect containment data and deriving Quantitative
Defect Management (QDM) measures early in the development life cycle provides opportunities for a project to identify issues
in defect capture before costs spiral out of control, schedule delays ensue, and another Death March begins [1].

Alison A. Frost and Michael J. Campo
Raytheon

Software quality issues have become a
sad cliché in the software engineering

industry. Versions 1.0 of commercial soft-
ware products are notoriously defect-rid-
den. Furthermore, mission critical soft-
ware has exhibited spectacular disasters,
such as the loss of the Mars Climate
Orbiter when English units were used in
the coding of the ground software file
used in trajectory models rather than the
specified metrics units [2]. Ensuring soft-
ware quality in mission critical systems is a
primary cost driver in software develop-
ment.

Several leading industry experts have
analyzed defect injection rates during soft-
ware development. Watts Humphrey
found, “ ... even experienced software
engineers normally inject 100 or more
defects per KSLOC [thousand lines of
code] into their programs” [3]. Capers
Jones gathered, “A series of studies found
the defect density of software ranges from
49.5-94.6 errors per thousand lines of
code” [4].

Compounding this situation, defects
detected late in the development cycle cost
many times more to repair than defects
detected in the stage they were injected. For
example, Watts Humphrey’s research show-
ed that the time it takes to fix a defect that
escapes out-of-stage as shown in Table 1 [3].

Defect Containment Basics
Many companies employ a defect contain-
ment strategy in an attempt to reduce soft-
ware costs and increase software quality.
Programs and/or organizations may pro-
vide monthly resulting measures from this
strategy as part of their team feedback or

management reviews. Defect containment
divides the engineering development cycle
into separate stages and maps the stage in
which a defect originated to the stage in
which the defect was detected (see Table 2).

Defects may originate at any stage of
the software development life cycle
(although usually the greatest percentage
of defects originates in the code and unit
test stage). Defects detected in-stage are
typically those defects detected during
peer reviews or unit tests. Defects detect-
ed out-of-stage are those detected after
the work product (e.g., design specifica-
tion, or code) has been delivered to a
downstream user (e.g., design released to
development team or code released to
software integration team). In-stage
defects appear along the diagonal cells. (In
Table 2, 2,421 defects originated and were
detected during code and unit test.) Out-
of-stage defects appear in the cells below
the diagonal. (In Table 2, 1,525 defects
originated in code and unit test, but were
not detected until software integration.)
These defect data provide insights to iden-
tify which processes cause the most
defects and which processes allow defects
to escape.

Defect containment is usually reported
as percentages of defects captured in the
stage in which they originated (see Table
3).

Using the data from Table 2, 48 per-
cent of defects originating in design were
detected (contained) in the design review
process; 55 percent of defects originating
in code were detected in the code
review/unit test process; and the overall
defect containment which equal the total

number of defects caught in-stage/total
defects for Table 2 was the following:

(1,515+1,555+2,421+37+1+10+0)/11,292
= 49 percent.

However, using defect containment to
measure effectiveness as a percentage of
in-stage capture is a lagging indicator.
Until a project has gone through the later
development stages, the ultimate number
of defects injected is unknown.
Furthermore, reporting superlative in-
stage capture rates prior to qualification
testing and system integration can be very
misleading. The effectiveness of design
and code peer reviews is unknown until it
is too late for a project to take action. As
such, traditional defect containment
becomes a useful post-mortem tool, but
does little to help a project when the pro-
ject still has an opportunity to take correc-
tive action.

Unfortunately, these two defect con-
tainment matrices (i.e. raw data count and
percentage) are where the majority of
engineers and managers conclude their
defect data examination. However, by
implementing a few derived measures
from the defect containment base mea-
sures, one can employ proactive QDM.

QDM
QDM predicts the number of defects
expected to be detected in each stage of
software development, enabling proactive
measures to be taken early in develop-
ment. Why wait until system integration to
discover that design and code peer reviews
were ineffective? QDM allows a project to
compare its defect detection rates against
similar projects. These predictive and lead-
ing (as opposed to lagging) software mea-
surements provide a mechanism to deter
defect-driven cost and schedule overruns.
This measure can be reported to a pro-
gram and/or organization periodically
(e.g. monthly) along with the defect con-

Requirement

1

Design

3-6

Coding

10

Development
Test

15-40

Acceptance
Test

30-70

During
Operation

40-1,000

Table 1: Time to Fix Defect That Escapes Stage (in hours)

December 2007 www.stsc.hill.af.mil 25

tainment measures for team or manage-
ment analysis and review.

Benefits of QDM are the following:
• Using predictive defect measures, a

project knows in real time if it is meet-
ing expected defect detection perfor-
mance. For example, if a project is not
finding the expected defects in design
and code reviews, managers should
investigate to determine if there is a
reasonable cause or if corrective
action is needed.

• Underperforming projects gain the
ability to make corrective actions early
rather than discovering problems at
the end of the project.

• Overachieving projects provide the
organization a chance to share best
practices and lessons learned.

• Quantitatively understanding the capa-
bility of its peer review process offers
an organization a chance to establish

goals for defect capture and preven-
tion, laying the groundwork for con-
tinuous improvement activities, and
establishing Capability Maturity Model
Integration (CMMI®) high maturity
processes. (Please note: Although
QDM may be a component of a
CMMI high maturity process, by itself
it may not qualify an organization to
be rated CMMI Maturity Level 4 or 5.)
There are five key factors to take into

account when applying QDM. To be
effective, an organization must do the fol-
lowing:
1. Utilize consistent definitions for terms

such as defect, size unit (e.g. source lines
of code [SLOC]), and life-cycle stages.

2. Automate data collection and report-
ing to record and track defect data.
Many change request tools exist that
facilitate the recording and retrieval of
in-stage and out-of-stage defect data,
as well as automating the creation of
derived measurement charts for pro-

jects. Exploitation of automation allows
projects to focus on data analysis rather than
collection.

3. Use past data to analyze current perfor-
mance and predict future perfor-
mance. Doing so allows one to create
and maintain control limits based on
performance capability. One can man-
age based on quantitative analysis.

4. Involve and train all levels of personnel.
Besides improving data integrity, prac-
titioners’ perspectives and analyses are
often found to be the most valuable.
Ownership of organizational goals
becomes shared by all levels of per-
sonnel.

5. Use QDM to improve project and
organizational performance, not to tar-
get individuals. This is true of any mea-
sure.
QDM aligns with many industry initia-

tives. For example, QDM supports CMMI
Level 4 and Level 5 as well as Six Sigma
philosophies [5].

Stage Originated

Stage Detected
Requirements Design Code and

Unit Test
SW

Integration
SW Quality

Test

System
Integration
and test

SW
Maintenance Total

Requirements

Design

Code and Unit Test

SW* Integration

SW Quality Test

System Integration
and Test

SW Maintenance

Total

1,515

1,181

402

200

191

89

0

3,578

1,555

912

420

223

114

0

3,224

2,421

1,525

370

114

0

4,430

37

7

5

0

49

1

10

0

0

0

1

0

10 0

1,515

2,736

3,735

2,182

792

332

0

11,292

* SW = Software

Table 2: Software Defect Containment Matrix

Stage Originated

Stage Detected
Requirements Design Code and

Unit Test
SW

Integration
SW Quality

Test

System
Integration
and test

SW
Maintenance

Requirements

Design

Code and Unit Test

SW Integration

SW Quality Test

System Integration
and Test

SW Maintenance

42%

33%

11%

6%

5%

2%

0%

48%

28%

13%

7%

4%

55%

34%

8%

3%

0%

76%

14%

10%

0% 0% 0% 0% 0%

100%

0% 100%

Table 3: Software Defect Containment Percentage Matrix

® CMMI is registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

Advancing Defect Containment to Quantitative Defect Management

Software Engineering Technology

26 CROSSTALK The Journal of Defense Software Engineering December 2007

In order to use defect containment in
this predictive manner, organizations must
do the following: 1) establish a baseline by
using defect containment data from previ-
ously completed projects, 2) normalize the
defect data found in each stage by size (e.g.
SLOC), and 3) apply statistical techniques
to set limits of expected defect detection
performance.

Three QDM Measures
Three measures derived from the defect
containment matrix that offer immediate
proactive insight into defect data are the
following: 1) Cumulative Defects
Originated in Design Detected by Stage;
2) Cumulative Defects Originated in Code
and Unit Test Detected by Stage; and 3)
Defect Detection Distribution by Stage.

The following steps will cover required
base measures, establishment of control
limits/boundaries, and graphical represen-
tation of data. (More measures can be
derived from defect containment to offer
proactive insight, but this sample is a good
start for a wide range of software engi-
neers.)

In order to create these three QDM
measures, the following base and derived
measures are required:
• Number of defects by stage of origin

(leveraged directly from the defect
containment matrix [see Table 2]).

• Number of defects by stage of discov-
ery (leveraged directly from the defect
containment matrix [see Table 2]).

• A size count, such as SLOC or func-
tion points.

• Normalize the defect count by the size
count (e.g. x defects per KSLOC).
Next, use comparison techniques on

historical data to establish the range of
expected defect detection, i.e., control lim-
its. These data must come from indepen-
dent observations of the same process
(e.g. separate design reviews.) The data

from each life-cycle stage is compared to
data from its own stage. In cases where a
defect in an earlier stage causes a defect in
a later stage, the defect counts as a single
defect in the stage it was originally intro-
duced.

Control limits can be derived by calcu-
lating 3σ limits based on existing data. In
this manner, defect data will fall between
these (3σ) limits 99.7 percent of the time.
Using 3-sigma limits avoids the need to
make assumptions about the distribution
of the underlying natural variation. As
noted by Florac and Carleton in the fol-
lowing note:

... experience over many years of
control charting has shown 3-
sigma limits to be economical in
the sense that they are adequately
sensitive to unusual variations
while leading to very few (costly)
false alarms – regardless of the
underlying distribution. [6]

Note: To calculate the control charts in
these examples, the u-chart formulas were
used.

For Cumulative Defects Originated in
Design Detected by Stage (Figure 1) and
for Cumulative Defects Originated in
Code and Unit Test Detected by Stage
(Figure 2), 3-sigma control limits are
established using the following u-chart
formulas:

,

,

where ubar is the mean for each subgroup
and nj is the sample size. An example fol-
lows in Table 4. Note: In this example,
KSLOCs were the size units of the design

artifacts.
For Defect Detection Distribution by

Stage (Figure 3), utilize a set of greater/
less than boundaries. The number of
defects detected in the software require-
ments stage should be less than the num-
ber found in the design stage. The number
of defects detected should continue to
increase through the code and unit test
stage. After the code and unit test stage,
the defects detected in each stage should
decrease through the remaining stages
with software maintenance stage detecting
the least amount of defects.

Finally, plot the data.
For the Cumulative Defects Origi-

nated in Design Detected by Stage, create
a chart where the x-axis is the life-cycle
stage and the y-axis is the number of
detected design-originated defects nor-
malized by size unit. Plot the total nor-
malized number of design defects found
in-stage, followed by the total cumulative
numbers of design defects detected in
each subsequent life-cycle stage (code and
unit test, software integration, software
qualification test, system integration, and
software maintenance). Pending analysis
preference, data points may or may not be
connected as a line on the chart; in the
examples that follow, they are connected
(see Figure 1).

For the Cumulative Defects Origi-
nated in Code and Unit Test Detected by
Stage, create the charts similar to the
process reviewed for Cumulative Defects
Originated in Design Detected by Stage
(see Figure 2).

For the Defect Detection Distribution
by Stage, plot a chart where the x-axis is
the software life-cycle stage and the y-axis
is the normalized number of defects
detected in each stage, regardless of the
stage in which they were introduced (see
Figure 3 for a display of the measure).

For Defect Detection Distribution by
Stage, defect detection distribution ideally
will mirror the defect injection distribu-
tion (thereby capturing defects as close as
possible to when they were injected). It is
known that the defect injection rate maps
to the Rayleigh distribution curve as
shown in Figure 4 [7]. (Statistically, the
Rayleigh distribution is a Weilbull Distri-
bution with a value of two.) Therefore, it
can be used to track the pattern of defect
removal during the software life cycle.

Analysis Results
Analysis of the QDM measures indicates
the best course of action for the project
and organization. Further, it is important
to compare the QDM measures with
other measures that the program or orga-

Design Defects/Actual KSLOCLifecycle Stage Where
Design Defects Detected

Design

Code and Unit Test

SW Integration

SW Quality Test

System Integration
and Test

SW Maintenance

Minimum Maximum

3.7

4.4

4.7

4.9

5.4

5.4

9.9

10.6

10.9

11.1

11.6

11.6

Table 4: Cumulative Defects Originated in Design Detected by Stage Control Limits

UCL = u+3
u
nj

LCL = MAX [0,u-3]u
nj

UCL = u+3
u
nj

LCL = MAX [0,u-3]u
nj

Advancing Defect Containment to Quantitative Defect Management

nization maintain in order to obtain a
more complete understanding. Ultimately,
the QDM measures provide indicators for
further investigation. Opportunities to
improve performance will vary among
projects and organizations, as shown in
the following examples:
• If a current project falls above the

upper control limit, a course of action
may be to perform causal analysis to
understand the reason for the behav-
ior. Possible actions include investigat-
ing means to reduce defects injected,
adjusting control limits, and identifying
best practices for defect detection to
be considered for organizational
deployment.

• If a current project falls below the
lower control limit, a goal may be to
get the current project to be as effec-
tive (e.g. during peer review) as the
past projects; this would be demon-
strated by moving the project within
the control limits over time. In this
case, the project may aggressively work
to improve design and code peer
reviews.

• Different opportunities exist if the
project data falls within the control
limits. Options include deploying
defect prevention measures that drive
the data toward the lower control limit
of the charts illustrated in Figures 1
and 2. Alternatively, one may choose
to gather a large enough sample to
tighten the existing control limits and
decrease projected variability.

• When looking at the Defect Detection
Distribution by Stage measure, if the
project has more defects detected in
the design stage than the code stage
(the defect detection efforts during
code and unit testing may have not
been effective), the project may not be
ready to begin the software integration
effort.
Establishing control limits on defect

detection provides an organization the
ability to predict the number of defects
that will be inserted into project work
products, based on work product size and
the use of a standard organizational soft-
ware development process. Predicting
defects inserted within a statistically
derived range may be used to determine
readiness to move from one development
stage to the next, and to predict future
rework costs.

Further, utilizing organization data or
industry standards on hours to correct defects
by stage, return on investment can be cal-
culated. Identifying peer review process or
training issues can provide substantial sav-
ings for minimal investment.

Some examples of actual process
improvements that resulted from the use
of the QDM (implemented at Raytheon
organizations) include the following:
• Design and code peer review stan-

dards were improved, with recommen-
dations of:
o Design peer review preparation

rate of less than 250 SLOC per
hour per reviewer.

o Code peer review preparation rate

December 2007 www.stsc.hill.af.mil 27

Project Design Defects

Defects Originated in Design Detected by Stage
(Normalized by Developed KSLOC)

16

14

12

10

8

6

4

2

0
Design Code and U T S/W Int. SW Quality Sys. Int. S/W Maint

D
ef
ec
ts
/K
S
L
O
C

5.34

8.47 9.92 10.68
11.08 11.08

Upper Limit No. of Defects Lower Limit

Project Code Defects

Defects Originated in Code and Unit Test Detected by Stage
(Normalized by Developed KSLOC)

18

16

14

12

10

8

6

4

2

0
Code and U T S/W Int. SW Quality Sys. Int. S/W Maint

D
ef
ec
ts
/K
S
L
O
C

8.32

13.56
14.83

15.22 15.22

Upper Limit No. of Defects Lower Limit

Figure 1: Cumulative Defects Originated in Design Detected by Stage

Defects Originated in Design Detected by Stage
(Normalized by Developed KSLOC)

16

14

12

10

8

6

4

2

0
Design Code and U T S/W Int. SW Quality Sys. Int. S/W Maint

D
ef
ec
ts
/K
S
L
O
C

5.34

8.47 9.92 10.68
11.08 11.08

Upper Limit No. of Defects Lower Limit

Project Code Defects

Defects Originated in Code and Unit Test Detected by Stage
(Normalized by Developed KSLOC)

18

16

14

12

10

8

6

4

2

0
Code and U T S/W Int. SW Quality Sys. Int. S/W Maint

D
ef
ec
ts
/K
S
L
O
C

8.32

13.56
14.83

15.22 15.22

Upper Limit No. of Defects Lower Limit

Figure 2: Cumulative Defects Originated in Code and Unit Test Detected by Stage Chart

Figure 3: Defect Detection Distribution by Stage

Project Defect Distribution

Defect Detection Distributed by Stage
(Goal is Rayleigh Distribution)

14

12

10

8

6

4

2

0
Requirement Design Code and Unit SW Integration SW Quality System SW

Test Test Integration Maintenance

D
ef
ec
ts
D
et
ec
te
d
/K
S
L
O
C

5.2

9.4

12.8

7.5

2.7

0

1.1

Software Life-cycle Stage

Threshold Tripped Within Threshold

Project Defect Distribution

Figure 4: Rayleigh Distribution

Software Engineering Technology

28 CROSSTALK The Journal of Defense Software Engineering December 2007

of less than 200 SLOC per hour
per reviewer.

o Peer reviews meetings should not
last longer than two hours [8].

• Peer reviews are postponed when par-
ticipation is inadequate.

• Project meetings are held to provide
feedback on QDM measures, address
training, and investigate questions of
data integrity.

• Software measurement tools were
updated to improve automation of
data collection and support analysis.
The improved peer review process,

data entry and analysis, and measurement
automation, were direct results of the
QDM efforts.

Conclusion
QDM takes defect containment to a new
level – from a reactive, lagging indicator to
a proactive, predictive indicator of soft-
ware quality. Samplings of derived defect
measures with steps on how to create
them were offered. QDM analyses pro-
vide an array of opportunities for process
improvements that increase quality and
reduce costs at both project and organiza-
tional levels.u

References
1. Yourdon, E. Death March. 2nd ed.

Prentice Hall, 2003.
2. Leveson, N. The Role of Software in

Spacecraft Accidents. Massachusetts
Institute of Technology, 2004.

3. Humphrey, W. “A Personal Commit-
ment to Software Quality.” Pittsburgh,
PA: The Software Engineering
Institute (SEI) <www.sei.cmu.edu>.

4. Jones, T.C. Programming Productivity.
New York: McGraw-Hill, 1972.

5. SEI. Capability Maturity Model
Integration. Version 1.2. Carnegie
Mellon, SEI, 2006.

6. Florac, William A., and Anita D.
Carleton. Measuring the Software
Process. Addison Wesley, 1999.

7. Kan, Stephen H. Metrics and Models
in Software Quality Engineering.
Addison-Wesley Publishing Company,
1995.

8 Frost, A.A. “Design and Code Inspec-
tion Metrics.” International Confer-
ence on Applications of Software
Measurement, San Jose, CA, 1999.

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

SEPT2006 c SOFTWARE ASSURANCE

OCT2006 c STAR WARS TO STAR TREK

NOV2006 c MANAGEMENT BASICS

DEC2006 c REQUIREMENTS ENG.

JAN2007 c PUBLISHER’S CHOICE

FEB2007 c CMMI

MAR2007 c SOFTWARE SECURITY

APR2007 c AGILE DEVELOPMENT

MAY2007 c SOFTWARE ACQUISITION

JUNE2007 c COTS INTEGRATION

JULY2007 c NET-CENTRICITY

AUG2007 c STORIES OF CHANGE

SEPT2007 c SERVICE-ORIENTED ARCH.

OCT2007 c SYSTEMS ENGINEERING

NOV2007 c WORKING AS A TEAM

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

About the Authors

Michael J. Campo is a
principal engineering fel-
low at Raytheon where
he currently leads the
Raytheon integrated
defense systems (IDS)

EPG and is a member of the Raytheon
corporate CMMI expert team. Campo is
a metrics leader at Raytheon. He is also
an SEI-authorized CMMI Lead
Appraiser and CMMI Instructor. He led
Raytheon IDS to a CMMI Level 3 soft-
ware engineering/software rating in
2003, and CMMI software engineer-
ing/software Level 4 and hardware Level
3 rating in 2005.

Raytheon
Tewksbury, MA 01876
Phone: (978) 858-5939
Fax: (978) 858-4505
E-mail: michael_j_campo

@raytheon.com

Alison A. Frost is a
national process engineer
at Raytheon. While in
Massachusetts, she was a
leader in the achievement
of CMM Level 4 for a

550-person Massachusetts/Alabama lab-
oratory. Frost managed an engineering
process group (EPG) metrics team com-
prised of statisticians, tools personnel,
and systems/software engineers. In
California, she was the DD(X) software
measurement lead where she spearhead-
ed the deployment of a measurement
repository to more than 30 sites and
companies. Currently, Frost is a Network
Centric Systems Fullerton EPG mem-
ber; her recent highlight was contribut-
ing the organization’s CMMI software
engineering/software/hardware Level 5
rating.

Raytheon
Fullerton, CA 92834
Phone: (978) 590-5905
Fax: (801) 340-7108
E-mail: frostfrost

@earthlink.net

December 2007 www.stsc.hill.af.mil 29

TOPIC ARTICLE TITLE AUTHOR(S) ISSUE PAGE

Acquisition

Change Management

Agile Development Collaboration Skills for Agile Teams Esther Derby 4 8

CMMI CMMI V1.2: What Has Changed and Why Mike Phillips 2 4

The Acquisition of Joint Programs Dr. Mary Maureen Brown,
Robert M. Flowe,
Sean Patrick Hamel

20

Applying COTS Java Benefits to Mission-Critical
Real-Time Software

Dr. Kelvin Nilsen 6 19

Miscellaneous

Net-Centricity

Controlling Organizational Change: Beyond the Nightmare Deb Jacobs 8 12

Connecting Software Industry Standards and Best Practices:
Lean Six Sigma and CMMI

Gary A. Gack,
Karl D. Williams

2 Online

GL Studio Brings Realism to Aircraft Cockpit Simulator Displays Kim Stults 6 16

Making Information Visible, Accessible, and Understandable:
Meta-Data and Registries

Clay Robinson 7 17

Issues to Consider Before Acquiring COTS Dr. David A. Cook 6 9

Profiles of Level 5 CMMI Organizations Donald J. Reifer 1 24

Communicating on the Move: Mobile Ad-Hoc Networks Robert F. Dillingham,
Dean Nathans

7 22

Enabling Technologies for Net-Centricity – Information on Demand The Honorable John J. Grimes 7 4

Challenges of Internet Development in Vietnam:
A General Perspective

Duy Le,
Dr. Rayford B. Vaughn,
Dr. Yoginder S. Dandass

1 16

Net-Centric Operations: Defense and Transportation Synergy COL Kenneth L. Alford, Ph.D.,
Steven R. Ditmeyer

1 20

Sharing Information Today: Maritime Domain Awareness Michael Todd 7 28

Providing the Tools for Information Sharing: Net-Centric Enterprise
Services

Ann H. Kim,
Carol Macha

7 10

A Unified Service Description for the Global Information Grid Dr. Yun-Tung Lau 8 23

Spiraling Information Demands – The Way Ahead With IPv6 Kristopher L. Strance 7 15

Making It Work – The Net-Centric Global Information Grid
NetOps Strategy

Thomas Lam 7 11

Controlling Software Acquisition Costs With Function
Points and Estimation Tools

Ian Brown 5 9

5

Defense Acquisition Performance Assessment – The Life-Cycle
Perspective of Selected Recommendations

Dr. Peter Hantos 5 25

Software Acquisition in the Army Elizabeth Starrett 5 4

Software Assurance: Five Essential Considerations for
Acquisition Officials

Mary Linda Polydys,
Stan Wisseman

5 14

Toward Agile Systems Engineering Processes Dr. Richard Turner 4 11

What Engineering Has in Common With Manufacturing and
Why It Matters

Dr. Alistair Cockburn 4 4

COTS Added Sources of Costs in Maintaining COTS-Intensive Systems Dr. Betsy Clark,
Dr. Brad Clark

6 4

Lean AISF: Applying COTS to System Integration Facilities Harold Lowery 6 13

Good News From Iraq CAPT Steven J. Lucks (Ret.) 8 4

“OO-OO-OO!” The Sound of a Broken OODA Loop Dr. David G. Ullman 4 22

For Net-Centric Operations, the Future Is Federated John Michelsen 9 24

Getting to GIG: Enterprise-Wide Systems Engineering Defense Information Systems Agency 7 9

Managing the Air Waves: Dynamic Spectrum Access and the
Transformation of DoD Spectrum Management

Thomas J. Taylor 7 19

Net-Centric Conversations: The Enterprise Unit of Work Harvey Reed,
COL Fred Stein (Ret.)

8 18

Reconfiguring to Meet Demands: Software-Defined Radio Dean Nathans,
Dr. Donald R. Stephens

7 24

Securing the Global Information Grid – The Way Ahead for
Information Assurance

Richard Aldrich,
David Zaharchek

7 13

Sharing Information Today: Net-Centric Operations in Stability,
Reconstruction, and Disaster Response

Dr. Linton Wells, II 7 7

Trusting the Team: Identity Protection and Management Defense-Wide Information
Assurance Program

7 20

Using Switched Fabrics and Data Distribution Service to Develop
High Performance Distributed Data-Critical Systems

Dr. Rajive Joshi 4 26

ARTICLE INDEX

VOLUME 19

CONTINUED ON NEXT PAGE

30 CROSSTALK The Journal of Defense Software Engineering December 2007

Department

TOPIC ARTICLE TITLE AUTHOR(S) ISSUE PAGE

Process Improvement Applying International Software Engineering Standards
In Very Small Enterprises

Claude Y. Laporte,
Alain April,
Alain Renault

2 29

CMMI Level 2 Within Six Months? No Way! George Jackelen 2 13

Lessons Learned in Using Agile Methods for Process Improvement Nelson Perez,
Ernest Ambrose

8 7

The ImprovAbility Model 2 23

Future Directions in Process Improvement Watts S. Humphrey,
James W. Over,
Dr. Michael D. Konrad,
William C. Peterson

2 17

Dr. Jan Pries-Heje,
Mads Christiansen,
Jorn Johansen,
Morten Korsaa

Measure Twice and Cut Once Rushby Craig 2 8

Project Management Earned Value Management: Are Expectations Too High? LTC Nannette Patton,
Allan Schechet

1 10

Quality

Beyond Defect Removal: Latent Defect Estimation With
Capture-Recapture Method

Joe Schofield 8 27

Service-Oriented Architectures Applying a Service-Oriented Architecture to Operational
Flight Program Development

Mitch Chan 9 20

Four Pillars of Service-Oriented Architecture Grace A. Lewis,
Dr. Dennis B. Smith

9 10

SOA Security Reference Model Nataraj Nagaratnam,
Anthony Nadalin,
Janet Mostow,
Sridhar Muppidi

9 Online

Software Security Baking in Security During the Systems Development
Life Cycle

Kwok H. Cheng 3 22

Being Explicit About Security Weaknesses Robert A. Martin 3 4

Cross-Domain Information Sharing in a Tactical Environment Mel Crocker 3 26

High-Leverage Techniques for Software Security Idongesit Mkpong-Ruffin,
Dr. David A. Umphress

3 18

How a Variety of Information Assurance Methods Delivers
Software Security in the United Kingdom

Kevin Sloan,
Mike Ormerod

3 13

The Security of Web Services as Software Karen Mercedes Goertzel 9 4

Software as an Exploitable Source of Intelligence Dr. David A. Umphress 6 29

Systems Engineering ConOps: The Cryptex to Operational System Mission Success Alan C. Jost 10 13

A Framework for Evolving System of Systems Engineering Dr. Ricardo Valerdi,
Dr. Adam M. Ross,
Dr. Donna H. Rhodes

10 28

Issues Using DoDAF to Engineer Fault-Tolerant Systems of Systems Dr. Ronald J. Leach 10 22

Software System Engineering: A Tutorial Dr. Richard Hall Thayer 10 17

Systems Engineering for the Global Information Grid: An Approach
At the Enterprise Level

Patrick M. Kern 10 10

Using the Incremental Commitment Model to Integrate System
Acquisition, Systems Engineering, and Software Engineering

Dr. Barry Boehm,
Jo Ann Lane

10 4

Where Hardware and Software Meet: The Basics Mike McNair 1 6

Team Software Process CMMI Level 5 and the Team Software Process David R. Webb,
Dr. Gene Miluk,
Jim Van Buren

4 16

Why Should I Use the People CMM? Margaret Kulpa 11 19

Tools for Decision Analysis and Resolution Dr. Richard D. Stutzke 11 23

The Relative Cost of Interchanging, Adding, or Dropping
Quality Practices

Bob McCann 6 25

Advancing Defect Containment to Quantitative Defect Management Alison A. Frost,
Michael J. Campo

12 24

Common Misconceptions About Service-Oriented Architecture Grace A. Lewis,
Edwin Morris,
Dr. Dennis B. Smith,
Soumya Simanta,
Lutz Wrage

11 27

Defining Services Using the Warfighter’s Language Michael S. Russell 9 14

Reference Metrics for Service-Oriented Architectures Dr. Yun-Tung Lau 12 15

A Primer on Java Obfuscation Stephen Torri,
Derek Sanders,
Dr. Drew Hamilton,
Gordon Evans

12 19

Secure Coding Standards James W. Moore,
Robert C. Seacord

3 9

Software Sustainment Geriatric Issues of Aging Software Capers Jones 12 4

Performance-based Software Sustainment
for the F-35 Lightening II

Lloyd Huff,
George Novak

12 9

Working as a Team The Gauge That Pays: Project Navigation and Team Building Kasey Thompson,
Tim Border

11 14

Shaping Motivation and Emotion in Technology Terms Jennifer Tucker,
Hile Rutledge

11 10

Wisdom for Building the Project Manager/Project Sponsor
Relationship: Partnership for Project Success

LTC Nanette Patton,
Allan Shechet

11 4

FROM PREVIOUS PAGE

BACKTALK

December 2007 www.stsc.hill.af.mil 31

Ijust received notice from CrossTalk’s
managing editor requiring a BackTalk

article for the December issue. Now!
I apologize in advance for the lack of

preparation. A previous message indicated
that BackTalk was covered, and Dr. Cook
and I could take a couple of issues off. In
reviewing the message, the two issues were
January and February, and I’m on the line for
December.

No problem. I’ve had short deadlines
before. I work well under pressure. Let the
creative juices flow from the cortex to the
fingers through the keyboard to the screen
past the editor to the page.

Wait, what does the last sentence of the
message say?

“It needs to be short, as we are printing
the article index – so about half of what you
typically write.”

Are you kidding me? They are cutting
BackTalk short for an article index? Do
they really think CrossTalk readers wait
with baited breath to meticulously browse
the article index? Do they realize this is the
21st century and indexes belong on the Web?

It needs to be short? Meetings need to be
short. Commercials need to be short.
Queues need to be short. Computer start-up
times need to be short, not BackTalk. It’s
already concise and to the point.

Would they treat Gustave Eiffel this way?
“Hey Gustave, beautiful tower, can you make
that half as high? We don’t want to distract
the tourists ... merci.”

They obviously got to da Vinci. “Hey
Leonardo, here’s an offer you can’t refuse. I
want Mona’s beaming smile diluted to a half
a grin ... grazie.”

Half of what I typically write? Would you
ask Dennis Miller for half a rant; Krispy
Kreme for half a doughnut; Britney for half
a rehab – okay, I’ll give you that; Lance for
half an effort; the Wizard for half a brain,
heart, or courage? Would you ask Al Gore
for half a carbon footprint? Wait, we did and
he won’t. Hey, there’s an idea, if I buy an arti-
cle index offset can I take more space for
BackTalk?

I understand half the calories, half the
wait, or a half-off sale, but half a BackTalk
makes no sense. What are they thinking? Can
you imagine the CrossTalk boardroom
conversation? “We need space for the annu-
al article index. Where can we find space?”

“What about BackTalk?”
Sting faintly singing: I want my Back-

Talk back.
Synthesizer, drums, guitar. Dire Straits

sings:

Look at them yo-yo’s, that’s the way to do it;
You write BackTalk for all to see.

That ain’t workin’, that’s the way you do it,
Article for nothing and your kicks for free.

Now that ain’t workin’,
That’s the way you do it,

Let me tell ya – them guys ain’t dumb
Maybe get a blister on their little finger

Maybe get a blister on their bum

We gotta install article indexes,
Custom issue deliveries

We gotta move that impersonator,
We gotta move that Ph.D.

Sting boldly singing: I want my, I want my, I
want my BackTalk back.

Let’s be honest: We all know that nine out
of 10 CrossTalk readers turn to Back-
Talk straight away for wit, indulgence, and
inspiration. While the Publisher’s Note intro-
duces the issue, BackTalk sets the tone –
warming up a reader’s mind in preparation
for the technical feast inside. If they think
they can get away with a half-baked
BackTalk ...

Knock, knock, knock.
Pardon me a moment to get the door.
Yes? Excuse me, are you arresting me?

What have I done? What have I done? What
have I done! You’re arresting me? Whoa,
whoa, whoa, get off me. Get off me! Help!
Why are they arresting me? What did I do?
Get off me! Get off me! I didn’t do anything!

...
We now return to your regularly sched-

uled (half) BackTalk (soft, soothing
elevator Muzak).

— Gary A. Petersen
Arrowpoint Solutions, Inc.

gpetersen@arrowpoint.us

IWant My BACKTALK Back

ISSUE COLUMN TITLE AUTHOR

Issue 1: January
Publisher:
BackTalk:

Issue 2: February

Issue 3: March

Issue 4: April

Issue 5: May

Issue 6: June

Issue 7: July

Issue 8: August

Issue 9: September

Issue 11: November

Issue 12: December

Publisher’s Choice Choose Your Favorite
One If By LAN, Two If By C

Diane E. Suchan
Elizabeth Starrett
Dr. David A. Cook

CMMI
Sponsor: Axiomatic Improvement
BackTalk: Hippocrates and the Oath

Randy B. Hill
Gary A. Petersen

Software Security
Collaborating for Secure Software
Project Management Using Random Events

Elizabeth Starrett
Dr. David A. Cook

Publisher:
BackTalk:

Sponsor:
BackTalk:Agile Development

“Lead, Follow, or Get Out of the Way” Kevin Stamey

Software Acquisition
Being a Smart Buyer
Who Are Those Guys?

Tony Guido
Gary A. Petersen

Sponsor:
BackTalk:COTS Integration

Navigating the COTS Sea Diane E. Suchan
Wiley F. Livingston, Jr., P.E

Sponsor:
BackTalk:Enabling Technologies for Net-Centricity

Delivering the Power of Information General James E. Cartwright

Stories of Change
Sponsor:
BackTalk:

The Right Way to Change
Common Threads in Life

Norman R. LeClair
Glenn Booker

Service-Oriented Architecture
SOA Provides Opportunities and Challenges
Evolution in Action – Building Up to a Service-Oriented Architecture

Elizabeth Starrett
Dr. David A. Cook

Issue 10: October
Systems Engineering

Sponsor:

BackTalk:

Revitalization of Systems Engineering Within the Department of Defense
and the Expanding Role of Software
Softwareitaville

Dr. John W. Fischer

Gary A. Petersen

Working as a Team
Sponsor:
BackTalk:

Working as a Team
SSMART Team Management

Kevin Stamey
Dr. David A. Cook

Software Sustainment
Publisher:
BackTalk:

Software Sustainment or Maintenance?
I Want My BackTalk Back

Elizabeth Starrett
Gary A. Petersen

Sponsor: Unit Compliance Inspection: What Did We Learn?

Sponsor:
BackTalk:

(Un) Due Diligence Dr. David A. Cook

COTS: Commercial Off-The-Shelf or Custom Off-The-Shelf?

Net-Centric Virtuosity Gary A. Petersen

Publisher:
BackTalk:

MONTHLY COLUMNS

CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

CrossTalk is
co-sponsored by the

following organizations:

www.dfas.milwww.dfas.mil

	Front Cover
	Table of Contents
	From the Publisher
	Software Sustainment
	Geriatric Issues of Aging Software
	Performance-Based Software Sustainmentfor the F-35 Lightning II
	Reference Metrics for Service-Oriented Architectures

	Software Engineering Technology
	A Primer on Java Obfuscation
	Advancing Defect Containment to Quantitative

	Coming Events
	Web Sites
	SSTC 2008
	2007 Article Index
	BackTalk
	Back Cover

